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Abstract. We study the asymptotic distribution of the Galois orbits of generic
sequences of algebraic points of small height in a projective variety over a number
field. Our main result is a generalization of Yuan’s equidistribution theorem that
applies to heights for which Zhang’s lower bound for the essential minimum is not
necessarily an equality. It extends to all projective varieties a theorem of Burgos Gil,
Philippon, Rivera-Letelier and the second author for toric varieties. It also applies
to sums of canonical heights for an algebraic dynamical system, and in particular it
recovers Kühne’s semiabelian equidistribution theorem. We also generalize previous
work of Chambert-Loir and Thuillier to obtain new logarithmic equidistribution
results. Finally we extend our main result to the quasi-projective setting recently
introduced by Yuan and Zhang.
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Introduction

In their seminal work [SUZ97], Szpiro, Ullmo and Zhang used Arakelov theory
to prove an equidistribution theorem for the Galois orbits of algebraic points of a
projective variety over a number field. Their result applies to generic sequences of
points in an abelian variety with Néron-Tate heights converging to zero, and is at the
heart of the proof of the Bogomolov conjecture for abelian varieties [Ull98, Zha98].
It has been developed in several directions by many authors, culminating with the
celebrated equidistribution theorem of Yuan [Yua08].
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In this paper we generalize Yuan’s theorem to allow more flexibility in the choice of
the height function. In the same spirit we generalize the logarithmic equidistribution
theorem of Chambert-Loir and Thuillier [CT09].

Our results extend to all projective varieties the toric equidistribution theorem of
Burgos Gil, Philippon, Rivera-Letelier and the second author [BPRS19]. Moreover
they strengthen it, showing that this result holds without any semipositivity assump-
tion and with respect to functions admitting logarithmic singularities along some
specific effective divisors. They also apply in the dynamical setting to sums of canon-
ical height functions, giving an equidistribution theorem allowing test functions with
logarithmic singularities along preperiodic hypersurfaces. In particular, this recovers
the semiabelian equidistribution theorem of Kühne [Küh22] and strengthens its state-
ment to include convergence with respect to functions with logarithmic singularities
along torsion and boundary hypersurfaces.

We also give a partial converse to our main result, showing that in some situations
the imposed condition on the height function is necessary for the the equidistribution
to occur. This includes the semipositive toric case, thus recovering the reciprocal of
the toric equidistribution theorem from [BPRS19]. Finally we extend our main result
to the setting of adelic line bundles on quasi-projective varieties introduced by Yuan
and Zhang [YZ26].

Background. Arakelov geometry provides a very general and powerful framework to
define and study heights of algebraic points. Classical heights in Diophantine geometry
such as Néron-Tate heights on abelian varieties are special cases of height functions
associated to metrized line bundles in the sense of Zhang [Zha95b].

Let K be a number field with a fixed algebraic closure K. Let X be a projective
variety of dimension d ≥ 1 over K and D an adelic divisor on X. The latter consists
of a Cartier divisor D on X with an adelic family of Green functions, and is a datum
essentially equivalent to that of a metrized line bundle on X. Let hD : X(K) → R be

the associated height function, and denote by µabs(D) and µess(D) its absolute and
essential minima.

A fundamental inequality of Zhang [Zha95a] asserts that if D is ample and D is
semipositive then

µess(D) ≥ (D
d+1

)

(d+ 1)(Dd)
, (1)

where (Dd) and (D
d+1

) denote the top intersection numbers of D and D, respectively.
For every generic sequence (xℓ)ℓ in X(K) we have lim infℓ→∞ hD(xℓ) ≥ µess(D),

and there exist generic sequences for which the equality holds. Following [BPRS19],
we say that (xℓ)ℓ is D-small if the heights of these points converge to the smallest
possible value, that is

lim
ℓ→∞

hD(xℓ) = µess(D).

For each place v ∈ MK we denote by Xan
v the v-adic analytification of X. It is a

Berkovich space over Cv, the completion of an algebraic closure of the local field Kv.
For an algebraic point x ∈ X(K) we denote by δO(x)v the uniform probability measure
on O(x)v ⊂ Xan

v , the image in Xan
v of the Galois orbit of x.

With this notation, Yuan’s theorem [Yua08] can be stated as follows.
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Theorem 1 (Yuan). Let D ∈ D̂iv(X) be a semipositive adelic divisor on X with
ample geometric divisor D, and assume that

µess(D) =
(D

d+1
)

(d+ 1)(Dd)
. (2)

Then for every v ∈ MK and every D-small generic sequence (xℓ)ℓ in X(K) the se-
quence of probability measures (δO(xℓ)v)ℓ on Xan

v converges weakly to c1(Dv)
∧d/(Dd).

In other words, this result asserts that if Zhang’s lower bound (1) is an equality
then D has the equidistribution property at every place v ∈ MK , in the sense that
the Galois orbits of points in D-small generic sequences equidistribute in Xan

v for
every v, and that moreover the v-adic equidistribution measure is the normalized
v-adic Monge-Ampère measure of D. When X is a curve, this theorem is due to
Autissier [Aut01] and Chambert-Loir [Cha06].

Yuan’s theorem encompasses in a unified way the (Archimedean) theorems of
Szpiro, Ullmo and Zhang for abelian varieties [SUZ97], of Bilu for canonical heights
on toric varieties [Bil97] and of Chambert-Loir for canonical heights on isotrivial semi-
abelian varieties [Cha00], as well as their non-Archimedean analogues by Chambert-
Loir [Cha06]. The positivity assumptions in Theorem 1 can be weakened, and in
fact Yuan’s proof remains valid when D is big but not necessarily ample. Moreover,
Berman and Boucksom [BB10] and later Chen [Che11] generalized this theorem for
the Archimedean places to the non-semipositive case.

By a result of the first author, the fact that Zhang’s lower bound is an equality
is equivalent to the equality between the essential and the absolute minima [Bal24,
Theorem 6.6]. This is a very restrictive condition that is nevertheless satisfied in the
important case of canonical heights on polarized dynamical systems [Zha95b], which
includes the canonical heights on toric varieties and the Néron-Tate heights on abelian
varieties.

To our knowledge, there is no general result ensuring the equidistribution property
for an adelic divisor on a projective variety over a number field when Zhang’s inequality
is strict. However, there are two remarkable situations where results in this direction
are known.

In [BPRS19], Burgos Gil, Philippon, Rivera-Letelier and the second author achieved
a systematic description of this property in the toric setting. Their result gives a crite-
rion in terms of convex analysis, and shows that there are plenty of toric adelic divisors
for which Zhang’s inequality is strict but that nevertheless satisfy the property. This
provides a wealth of new equidistribution phenomena previously out of reach, as well
as situations where it does not occur.

In [Küh22], Kühne proved the long standing semiabelian equidistribution conjec-
ture, showing that this property holds for canonical heights on semiabelian varieties.
As shown by Chambert-Loir [Cha00], Theorem 1 does not apply in this case as the
condition (2) can fail when the semiabelian variety is not isotrivial. Kühne’s theorem
allowed him to give a purely Arakelov-geometric proof of the semiabelian Bogomolov
conjecture, previously established by David and Philippon with other methods [DP00].

Main theorem. The results of [BPRS19] and [Küh22] raise the following question:
on an arbitrary projective variety, what can be said regarding the equidistribution
property for an adelic divisor when Zhang’s lower bound is strict? More precisely, can
we identify a condition weaker than (2) that guarantees this property for a given adelic
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divisor? Our main contribution is a generalization of Yuan’s theorem that answers
affirmatively this question.

As in [SUZ97, Cha06, Yua08, Che11], the positivity properties of adelic divisors
play a central role in our approach. We work with the more general notion of adelic
R-divisors developed by Moriwaki, as it provides a particularly efficient framework to
study positivity [BMPS16, Mor16]. Adelic R-divisors are better behaved on normal
varieties, and so we assume that X is normal from now on.

Let D be an adelic R-divisor on X. A semipositive approximation of D is a pair
(ϕ,Q) consisting of a normal modification ϕ : X ′ → X and a semipositive adelic R-
divisor Q on X ′ such that the R-divisor Q is big and ϕ∗D −Q is pseudo-effective. It
is a variant of the notion of admissible decomposition introduced by Chen [Che11].

Given two big R-divisors P,A on X, the inradius of P with respect to A is the
positive real number defined as

r(P ;A) = sup{λ ∈ R |P − λA is big}.

This geometric invariant was introduced by Teissier [Tei82] and measures the bigness
of P , see Section 1.2 for more details. Our main result is the following.

Theorem 2. Let D be an adelic R-divisor on X with D big. Assume that there exists
a sequence (ϕn : Xn → X,Qn)n of semipositive approximations of D such that

lim
n→∞

µess(D)− µabs(Qn)

r(Qn;ϕ∗nD)
= 0. (3)

Let v ∈ MK , and for each n ≥ 1 let νn,v be the pushforward to Xan
v of the normalized

v-adic Monge-Ampère measure c1(Qn,v)
∧d/(Qd

n) on X
an
n,v. Then

(i) the sequence (νn,v)n converges weakly to a probability measure νv on Xan
v ,

(ii) for every D-small generic sequence (xℓ)ℓ in X(K), the sequence of probability
measures (δO(xℓ)v)ℓ on Xan

v converges weakly to νv.

Theorem 1 follows immediately from this result applied with the constant sequence
(ϕn, Qn) = (IdX , D), n ∈ N. Theorem 2 also implies Chen’s equidistribution theorem
(Corollary 4.12).

We actually prove a stronger result (Theorem 4.8) showing that under the condi-

tion (3) for every D-small generic sequence (xℓ)ℓ in X(K) and E ∈ D̂iv(X)R we have

lim
ℓ→∞

hE(xℓ) = lim
n→∞

(Q
d
n · ϕ∗nE)− dµess(D) (Qd−1

n · ϕ∗nE)

(Qd
n)

. (4)

In particular, both limits exist in R and the second does not depend on the choice of
the sequence (ϕn, Qn)n. Theorem 2 follows by specializing (4) to the adelic divisors
E over the zero divisor of X associated to continuous real-valued functions on Xan

v .
We also obtain a generalization of Chambert-Loir and Thuillier’s logarithmic equi-

distribution theorem [CT09], showing that in the situation of Theorem 2 the equidistri-
bution property extends to test functions with logarithmic singularities along effective
divisors satisfying a numerical condition (Theorem 5.13 and Corollary 5.15).

Note that it is always possible to construct a sequence (ϕn, Qn)n of semipositive ap-
proximations of D with µabs(Qn) converging to µess(D), see for instance Lemma 4.13.
However, for such sequences the condition (3) is not necessarily satisfied since as
already explained, there are situations where the equidistribution property fails.
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Toric varieties. We first apply our results in the toric setting. To this end, let X
be a projective toric variety over K with torus T ≃ Gd

m and D a toric adelic R-
divisor on X with big geometric R-divisor D. Let ∆D be the d-dimensional polytope
associated to this R-divisor. Following [BPS14], the family of Green functions of
D induces a family of concave functions ϑD,v : ∆D → R, v ∈ MK , called local roof
functions, whose weighted sum gives the global roof function

ϑD : ∆D → R.

These concave functions convey a lot of information about the height function of D.
For instance, its essential minimum coincides with the maximum of ϑD, and if D is
semipositive then its absolute minimum coincides with the minimum of this concave
function. This readily implies that the only toric adelic R-divisors to which Yuan’s
theorem applies are those whose associated global roof function is constant.

The global roof function ϑD is said to be wide if the width of its sup-level sets
remains relatively large as the level approaches its maximum, see Appendix A for
details. When this is the case, there is a unique balanced family of vectors uv, v ∈ MK ,
such that each uv is a sup-gradient of the v-adic roof function ϑD,v. Then for each v
we can associate to uv a probability measure on Xan

v that we denote by ηD,v. When
v is Archimedean, it is the Haar probability measure on a translate of the compact
torus Sv ≃ (S1)d of Tan

v , whereas if v is non-Archimedean it is the Dirac measure at a
translate of the Gauss point of this v-adic analytic torus, see Section 6.2 for precisions.

The following is our main result in this setting.

Theorem 3. Let D be a toric adelic R-divisor on X with D big, and assume that ϑD
is wide. Then for every v ∈ MK and every D-small generic sequence (xℓ)ℓ in X(K)
the sequence of probability measures (δO(xℓ)v)ℓ on Xan

v converges weakly to ηD,v.

We actually show a stronger result (Theorem 6.6): under the assumptions of The-

orem 3, for every D-small generic sequence (xℓ)ℓ in X(K) and every E ∈ D̂iv(X)R
with E toric we have

lim
ℓ→∞

hE(xℓ) =
∑

v∈MK

nv

∫
Xan

v

gE,v dηD,v,

where gE,v denotes the v-adic Green function of E. The case when E is arbitrary can

be reduced to the previous one by linear equivalence (Corollary 6.8).
As an application of our logarithmic equidistribution result we strengthen the pre-

vious to allow test functions with logarithmic singularities along the boundary and
some specific translates of subtori (Theorem 6.12). In the semipositive case we can
combine it with the characterization of the Bogomolov property in [BPRS19, Section
5] to obtain the following consequence (Corollary 6.13).

Theorem 4. Let D be a semipositive toric adelic R-divisor on X with D big and
such that ϑD is wide. Let E be an effective divisor on X such that each irreducible

component V of E that is not contained in X \T satisfies µess(D|V ) = µess(D). Then
for every v ∈ MK and every D-small generic sequence (xℓ)ℓ in X(K) we have

lim
ℓ→∞

∫
Xan

v

φdδO(xℓ)v =

∫
Xan

v

φdηD,v

for any function φ : Xan
v → R∪{±∞} with at most logarithmic singularities along E.
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We also show that when D is semipositive, the converse of Theorem 3 holds: in
this situation, the condition that ϑD is wide is necessary for the equidistribution of

the Galois orbits of points in D-small generic sequences (Theorem 6.9). Together with
Theorem 3, this fully recover the main theorem of [BPRS19]. We refer to Remark 6.11
for a more detailed comparison between our results and those in loc. cit..

Dynamical systems and semiabelian varieties. Yuan’s theorem gives the equidis-
tribution property for the canonical metrized line bundles associated to polarized dy-
namical systems, a result with vast consequences in arithmetic dynamics. In a similar
vein, our result implies this property for adelic R-divisors that are sums of several
canonical adelic R-divisors with different regimes with respect to a dynamical system
that is not necessarily polarized.

Let ϕ : X → X be a surjective endomorphism of a normal projective variety over K
of dimension d ≥ 1. Then ϕ is finite and we denote by deg(ϕ) its degree. For
i = 1, . . . , s let Di ∈ Div(X)R with ϕ∗Di ≡ qiDi for a real number qi > 1 and set

D =
s∑

i=1

D
can
i ,

where D
can
i ∈ D̂iv(X)R denotes the canonical adelic R-divisor over Di. For simplicity

here we assume that Di is effective for every i and that D is ample, although our
results are valid under slightly weaker positivity assumptions.

Theorem 5. Let v ∈ MK and denote by µv the normalized Monge-Ampère measure
of any semipositive adelic R-divisor over D. Then

(i) the sequence
(ϕ◦n,an,∗v µv

deg(ϕ)n

)
n
converges weakly to a probability measure νv on Xan

v ,

(ii) for every D-small generic sequence (xℓ)ℓ in X(K) the sequence of probability
measures (δO(xℓ)v)ℓ on Xan

v converges weakly to νv.

In this statement we denote by ϕ◦n,an,∗v µv the pullback of the probability measure µv
on Xan

v with respect to the n-th iterate of the v-adic analytification of ϕ, which is well-
defined because ϕ is finite. Note that a semipositive adelic R-divisor over D always
exists by ampleness.

The probability measure νv in Theorem 5 is called the v-adic equilibrium measure
of ϕ with respect to D, and this result shows that it is well-defined in this context.
If the v-adic Green function of Dcan

i is semipositive for every i then this measure

coincides with the normalized v-adic Monge-Ampère measure of D, that is

νv =
c1(Dv)

∧d

(Dd)
.

These results are contained in Theorem 7.4, which also shows the existence and gives

an explicit expression for the limit height limℓ→∞ hE(xℓ) for any E ∈ D̂iv(X)R.

Theorem 5 is a straightforward consequence of Theorem 2. WhenD is semipositive,
it is obtained by considering the sequence of adelic R-divisors on X defined as

Qn = q−n ϕ◦n,∗D, n ∈ N,
with q = maxj qj . From the dynamical properties of D

can
i , i = 1, . . . , s, one can

check that (IdX , Qn) is a semipositive approximation of D whose absolute minimum
decreases much faster than its inradius as n→ ∞, and conclude then with Theorem 2.
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As another application of the logarithmic equidistribution theorem, we strengthen
the previous result in the semipositive case to allow test functions with logarithmic
singularities along preperiodic hypersurfaces.

Theorem 6. Assume that Dcan
i is semipositive for every i. Let (xℓ)ℓ be a D-small

generic sequence in X(K) and E an effective divisor on X such that each of its
irreducible components is preperiodic. Then for every v ∈ MK we have

lim
ℓ→∞

∫
Xan

v

φdδO(xℓ)v =

∫
Xan

v

φ
c1(Dv)

∧d

(Dd)

for any function φ : Xan
v → R ∪ {±∞} with at most logarithmic singularities along E.

As a particular case of these results we recover Kühne’s semiabelian equidistribu-
tion theorem [Küh22] and extend it to include the computation of the corresponding
limit heights (Theorem 7.10). Furthermore, we can also strengthen it to show the con-
vergence of the Galois orbits of points in generic small sequences with respect to test
functions with logarithmic singularities along torsion hypersurfaces (Theorem 7.14).

Further results and questions. In Theorem 4.16 we give an alternative formulation
of Theorem 2 in terms of the arithmetic positive intersection numbers introduced by
Chen [Che11]. Its statement is more intrinsic in the sense that it does not rely on the
choice of a specific sequence of semipositive approximations.

In [YZ26, Theorem 5.4.3], Yuan and Zhang extended Yuan’s theorem to the set-
ting of adelic line bundles on quasi-projective varieties. In Section 8 we present a
generalization of Theorem 2 in this context that recovers this result.

In the toric setting the condition in Theorem 2 translates into a convex analysis
statement involving the global roof function. We have a similar result on an arbitrary
projective variety in terms of the arithmetic Okounkov bodies introduced and studied
by Boucksom and Chen [BC11]. Since this is beyond the scope of this text, it will
appear in a subsequent manuscript.

As already explained, the condition in Theorem 2 is optimal in the semipositive
toric case: for a semipositive toric adelic R-divisor the equidistribution property at
every place is equivalent to the existence of a sequence of semipositive approximations
satisfying the condition (3). It is natural to ask whether this remains true in general,
that is if Theorem 2 actually gives a criterion for the equidistribution property (Ques-
tion 4.19). In Proposition 5.17 we give an affirmative answer under an additional
technical condition, which is always satisfied for semipositive toric adelic R-divisors.

Comments on the proof. Our initial motivation was to generalize the toric equidis-
tribution theorem from [BPRS19] to all projective varieties. A major obstacle was that
both the statement and the proof of this result rely heavily on notions and tools that
are specific to toric adelic R-divisors, with no clear extension outside of the toric
setting. A first step was to produce a non-trivial reformulation of the toric equidis-
tribution theorem that we could translate in terms of the arithmetic and geometric
properties of the algebra of global sections of the adelic R-divisor, leading to the
statement of Theorem 2.

The proof of Theorem 2 is based on Szpiro, Ullmo and Zhang’s variational prin-
ciple and Yuan’s arithmetic analogue of Siu’s inequality. Compared with [Yua08],
we do not apply the latter directly to D but rather to the sequence of semipositive
approximations satisfying the condition (3). The main difficulty is that we need to
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keep a very precise control of the error terms that arise in this asymptotic process.
The core of our proof is a new consequence of the arithmetic Siu’s inequality with
an error term involving an inradius (Corollary 5.3). It is based on precise estimates
for arithmetic intersection numbers based on the arithmetic Hodge index theorem of
Yuan and Zhang [YZ17]. This technical feature is not needed in the case of curves,
for which most of the difficulties disappear.

We next outline the proof in this situation. Assume that X is a smooth projective
curve over K with an adelic R-divisor D such that D is big. Shifting the Green
functions of D if necessary we assume µess(D) > 0.

The assumption of Theorem 2 boils down to

lim
n→∞

µess(D)− µabs(Qn)

(Qn)
= 0 (5)

for a sequence (Qn)n of semipositive adelic R-divisors on X with Qn big and D −
Qn pseudo-effective for every n. Indeed, since d = 1 every modification of X is
an isomorphism, and moreover r(Qn;D) = (Qn)/(D) and so the inradius in that
condition can be replaced by the intersection number (Qn).

Let v ∈ MK and (xℓ)ℓ a D-small generic sequence in X(K). To prove that D
satisfies the equidistribution property at v we need to show that for every continuous
function φ : Xan

v → R we have

lim
ℓ→∞

∫
Xan

v

φdδO(xℓ)v = lim
n→∞

∫
Xan

v

φ
c1(Qn,v)

∧d

(Qn)
, (6)

including the existence of both limits. By a standard density argument, it suffices to
consider the case where φ is Gal(Kv/Kv)-invariant. This allows to associate to φ an
adelic divisor E = 0

φ
over the zero divisor of X such that (6) translates into

lim
ℓ→∞

hE(xℓ) = lim
n→∞

(Qn · E)

(Qn)
. (7)

By density, we can furthermore assume that E is the difference of two semipositive
adelic divisors on X.

Let λ ∈ (0, 1). Then

µess(D) + λ lim inf
ℓ→∞

hE(xℓ) = lim inf
ℓ→∞

hD+λE(xℓ) ≥ µess(D + λE)

by the linearity of heights and the definition of the essential minimum. Now the
assumption that D−Qn is pseudo-effective together with Zhang’s lower bound for the
essential minimum in terms of the χ-volume (Theorem 2.18) gives

µess(D + λE) ≥ µess(Qn + λE) ≥ v̂olχ(Qn + λE)

2 (Qn)
.

The condition (5) implies µabs(Qn) > 0 for n large enough, and therefore Qn is nef.
Then a classical consequence of Yuan’s arithmetic version of Siu’s inequality [Yua08]
shows that there exists a constant c ≥ 0 such that

v̂olχ(Qn + λE) ≥ (Q
2
n) + 2λ (Qn · E)− c λ2 (8)
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for every sufficiently large n. On the other hand, Zhang’s theorem on successive

minima gives (Q
2
n) ≥ 2 (Qn)µ

abs(Qn). Combining these inequalities gives

lim inf
ℓ→∞

hE(xℓ) ≥
µabs(Qn)− µess(D)

λ
+

(Qn · E)

(Qn)
− c λ

2 (Qn)
.

Using (5), we can apply this to a suitable sequence of real numbers (λn)n to obtain

lim inf
ℓ→∞

hE(xℓ) ≥ lim sup
n→∞

(Qn · E)

(Qn)
,

and then (7) by applying this inequality to −E. This concludes the proof in the
one-dimensional case.

In higher dimensions this argument breaks down as a lower bound of the form (8)
is not precise enough to take advantage of the condition in Theorem 2. This is where
we need the finer estimate from Corollary 5.3.

When specialized to semiabelian varieties, our proof of Theorem 2 is different from
Kühne’s, although both ultimately rely on an asymptotic use of the arithmetic Siu’s in-
equality: indeed, we do not need to modify the semiabelian variety through a sequence
of isogenies as in [Küh22], but rather produce a suitable sequence of semipositive ap-
proximations sitting on the given semiabelian variety.

As emphasized in [Che11], the variational principle reduces the equidistribution
property to the differentiability of invariants associated to adelic R-divisors. For
example, Yuan’s theorem is a consequence of the differentiability of the χ-volume
function [Yua08] whereas Chen’s equidistribution theorem follows from the differen-
tiability of the arithmetic volume function [Che11]. Similarly, our main results con-
cern the differentiability of the essential minimum function, which is equivalent to
the height convergence property in (4) and thus implies Theorem 2. We refer the
reader to Section 4.1 for a review of the correspondence between differentiability and
equidistribution.

Organization. Sections 1 and 2 contain the material we need about R-divisors and
adelic R-divisors. In Section 3 we study the relationship between Fujita approxi-
mations and positive intersection numbers of adelic R-divisors. We state our main
theorem in Section 4 and prove it in Section 5 together with some complements like
the partial converse and the logarithmic equidistribution theorem. In Sections 6 and 7
we apply these results in the settings of toric varieties and of dynamical systems, in-
cluding semiabelian varieties. Finally, in Section 8 we extend our main theorem to
quasi-projective varieties. Appendix A contains the auxiliary results in convex analysis
that are needed for the application to toric varieties.
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Notation and conventions

We let K be a number field and K a fixed algebraic closure of K. We also let
OK be the ring of integers of K. We denote by MK the set of places of K and by
M∞

K ⊂ MK the subset of Archimedean places. For each v ∈ MK we denote by Kv the
completion of K with respect to v, and by Qv the closure of Q in Kv. We endow Kv

with the unique absolute value | · |v extending the usual absolute value on Qv and set

nv =
[Kv : Qv]

[K : Q]
.

These absolute values and weights verify the product formula:∑
v∈MK

nv log |α|v = 0 for α ∈ K×.

Furthermore, for any place v0 ∈ MQ we have
∑

v|v0 nv = 1, the sum being over the

places v ∈ MK above v0.
For each v ∈ MK we fix an algebraic closure Kv of Kv, which admits a unique

absolute value extending | · |v. We denote by Cv the completion of Kv, and we still
denote by | · |v the induced absolute value. We also fix an embedding K ↪→ Kv ⊂ Cv.

A variety is a separated and integral scheme of finite type over a field. We let X
be a normal projective variety over K of dimension d ≥ 1. A modification of X is a
birational projective morphism ϕ : X ′ → X, that is said normal if so is X ′. We write
XK′ = X ×K Spec(K ′) for any field extension K ⊂ K ′. The elements of X(K) are
called the algebraic points of X.

A measure is a Radon measure on a locally compact Hausdorff space. A signed
measure is a difference of two measures.

1. The inradius of an R-divisor

Throughout the text we assume some working knowledge of R-divisors and their
positivity properties as presented in [Laz04, Chapters 1 and 2]. Nevertheless, in this
section we recall the basic objects and notations. We pay special attention to the
inradius of an R-divisor, explaining its properties and relation to other invariants.

1.1. Intersection numbers and global sections of R-divisors. We denote by
Div(X) the Abelian group of Cartier divisors on X and by Div(X)R = Div(X)⊗Z R
the real vector space of R-Cartier divisors. Since X is normal, there is an injective
morphism from Div(X) to the free Abelian group of Weil divisors of X. Therefore
Div(X) has no torsion and there is an inclusion Div(X) ⊂ Div(X)R. Since we will
be mainly concerned with Cartier divisors and R-Cartier divisors, we just call them
divisors and R-divisors for short.

We denote by Rat(X) the field of rational functions of X and we set Rat(X)×R =
Rat(X)× ⊗Z R. For a nonzero rational function f ∈ Rat(X)× we denote by div(f) ∈
Div(X) its associated principal divisor. This assignment extends by linearity to a map

div : Rat(X)×R −→ Div(X)R.

Given two R-divisors D,D′ on X we write D ≡ D′ when they are linearly equivalent,
that is when D′ = D + div(f) for some f ∈ Rat(X)×R .
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For D ∈ Div(X)R we denote by [D] its associated R-Weil divisor. The support
of D, denoted by supp(D), is defined as the support of this R-Weil divisor. It is a
closed subset of X.

For an integer 0 ≤ r ≤ d, an r-dimensional cycle Z of X and a family of R-divisors
Di ∈ Div(X)R, i = 1, . . . r, we denote their intersection number by

(D1 · · ·Dr · Z) ∈ R.
When Z = X we simply write this quantity as (D1 · · ·Dd). It depends only on the
linear equivalence classes of the R-divisors and is invariant under normal modifications.
If D ∈ Div(X)R is nef then the intersection number (Dd) coincides with the volume
vol(D) of D.

Given D1, . . . , Dd−1, Dd, D
′
d ∈ Div(X)R with Di nef for 1 ≤ i ≤ d− 1 and Dd −D′

d
pseudo-effective, the corresponding intersection numbers compare as

(D1 · · ·Dd−1 ·D′
d) ≤ (D1 · · ·Dd−1 ·Dd). (1.1)

The space of global sections of an R-divisor D is defined as

Γ(X,D) = {(f,D) | f ∈ Rat(X)×, D + div(f) ≥ 0} ∪ {0}.
It is a finite dimensional real vector space. Given s = (f,D) ∈ Γ(X,D) \ {0} we set

div(s) = D + div(f) ∈ Div(X)R

for the corresponding R-divisor in the linear equivalence class of D.
Given global sections s1 = (f1, D1) and s2 = (f2, D2) of R-divisors D1, D2 ∈

Div(X)R, their product is defined as

s1 ⊗ s2 = (f1f2, D1 +D2) ∈ Γ(X,D1 +D2).

The algebra of sections of D is then defined as the direct sum

R(D) =
⊕
m∈N

Γ(X,mD)

endowed with the structure of graded algebra induced by this product.

1.2. Definition and basic properties of the inradius. The notion of inradius of
a line bundle with respect to another one was introduced by Tessier as a measure
of its bigness [Tei82]. As explained in loc. cit., the terminology is inspired by its
interpretation in the toric setting, where it identifies with the usual inradius in the
sense of convex geometry (Proposition 6.1).

Definition 1.1. Let P,A be big R-divisors on X. The inradius of P with respect
to A is defined as

r(P ;A) = sup{λ ∈ R | P − λA is big} = sup{λ ∈ R | P − λA is pseudo-effective}.

We have r(P ;A) < ∞: indeed, choosing any ample divisor H then for any λ ∈ R
such that P − λA is pseudo-effective we have λ ≤ (Hd−1 · P )/(Hd−1 · A) by (1.1).
On the other hand, since P is big we also have r(P ;A) > 0 by the continuity of the
volume function. Hence r(P ;A) is a positive real number.

Note that P − r(P ;A)A is pseudo-effective. Moreover

r(δP ;A) = δ r(P ;A) and r(P ; δA) = δ−1 r(P ;A) for δ ∈ R>0,

and r(ϕ∗P ;ϕ∗A) = r(P ;A) for any normal modification ϕ : X ′ → X. This latter
property follows from the fact that the volume is invariant under birational morphisms.
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Changing the big R-divisor of reference A can only modify the inradius r(P ;A) up
to a bounded factor, as we next show.

Lemma 1.2. Let P,A1, A2 be big R-divisors on X. Then

r(A2;A1) r(P ;A2) ≤ r(P ;A1) ≤
1

r(A1;A2)
r(P ;A2).

Proof. Since both P − r(P ;A2)A2 and A2 − r(A2;A1)A1 are pseudo-effective, so is
P − r(P ;A2) r(A2;A1)A1. Therefore r(A2;A1) r(P ;A2) ≤ r(P ;A1), which gives the
first inequality. The second follows by interchanging the roles of A1 and A2. □

The next key lemma shows that the inradius can be controlled up to a constant
factor by a quotient of intersections numbers.

Lemma 1.3. Let P,A be big and nef R-divisors on X. Then

(P d)

d (P d−1 ·A)
≤ r(P ;A) ≤ (P d)

(P d−1 ·A)
.

Proof. For λ ∈ R, by Siu’s inequality [Laz04, Theorem 2.2.15] we have that P −λA is
big whenever

(P d) > λd (P d−1 ·A).
This gives the first inequality. The second follows from the facts that P is nef and
P − r(P ;A)A is pseudo-effective, which imply

(P d)− r(P ;A) (P d−1 ·A) = (P d−1 · (P − r(P ;A)A)) ≥ 0

by the inequality (1.1). □

Lemma 1.4. Let P,A be big and nef R-divisors on X with A − P pseudo-effective.
Then

r(P ;A) ≥ (P d)

d (Ad)
.

Proof. Since A− P is pseudo-effective and A,P are nef, we get (P d−1 ·A) ≤ (Ad) by
iteratively applying (1.1). The result then follows from Lemma 1.3. □

The inradius allows to control the behavior of the volume function with respect to
perturbations, under suitable positivity assumptions.

Lemma 1.5. Let P,E,A ∈ Div(X)R with P,A big and A±E pseudo-effective. Then
for every λ ∈ R with 0 ≤ λ ≤ r(P ;A) we have(

1− λ

r(P ;A)

)d
vol(P ) ≤ vol(P + λE) ≤

(
1 +

λ

r(P ;A)

)d
vol(P ).

Proof. Since A− E is pseudo-effective we have that

1

r(P ;A)
P − E =

1

r(P ;A)
(P − r(P ;A)A) +A− E

is also pseudo-effective. Therefore

vol(P + λE) ≤ vol
(
P +

λ

r(P ;A)
P
)
=
(
1 +

λ

r(P ;A)

)d
vol(P )
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because the volume function is positive homogeneous of degree d and increases along
pseudo-effective directions. Similarly,

1

r(P ;A)
P + E =

1

r(P ;A)
(P − r(P ;A)A) +A+ E

is pseudo-effective and so(
1− λ

r(P ;A)

)d
vol(P ) = vol

(
P − λ

r(P ;A)
P
)
≤ vol(P + λE)

as stated. □

2. Adelic R-divisors

In this section we recall the definition and basic facts concerning adelic R-divisors,
referring to [BPS14, BMPS16, Mor16] for the proofs and more details.

2.1. First definitions. For v ∈ MK we denote by Xan
v the analytification of XCv

in the sense of Berkovich, see [BPS14, Section 1.2] and [Mor16, Section 1.3] for short
introductions sufficient for our purposes. There is an injective map X(Cv) ↪→ Xan

v

that induces an inclusion

ιv : X(K) ↪−→ Xan
v

via the chosen embedding K ↪→ Kv ⊂ Cv.
For an algebraic point x ∈ X(K) we denote by O(x) ⊂ X(K) its orbit under the

action of the absolute Galois group Gal(K/K), and by

O(x)v = ιv(O(x)) ⊂ Xan
v

its image under ιv. It does not depend on the choice of the embedding.
The local Galois group Gv = Gal(Kv/Kv) acts on Xan

v . We denote by C(Xan
v )

the space of continuous real-valued functions on Xan
v and by C(Xan

v )Gv ⊂ C(Xan
v ) the

subspace of those functions that are Gv-invariant.
Let D ∈ Div(X)R and v ∈ MK . A continuous v-adic Green function for D is a

Gv-invariant function

gv : X
an
v \ supp(D)anv → R

with the property that for each open subset U ⊂ X whereD is defined by an R-rational
function f we have that gv + log |fanv |v extends to a continuous function on Uan

v , with
fanv the v-adic analytification of f . In this text we only consider continuous v-adic
Green functions, and so we call them v-adic Green functions for short.

Let U ⊂ Spec(OK) be a nonempty open subset. A model of X over U is a normal
integral projective scheme X → U such that X = X ×U Spec(K). For D ∈ Div(X)R,
a model of (X,D) over U is a pair (X ,D) where X is a model of X over U and D is
an R-divisor on X whose restriction to X coincides with D. Such a model induces a
v-adic Green function for D for each place v ∈ U that we denote by gD,v, see [Mor16,
Section 2.1] for details.

Definition 2.1. An adelic R-divisor on X is a pair D = (D, (gv)v∈MK
) with D ∈

Div(X)R and gv a v-adic Green function for D for each v ∈ MK , such that there is a
model (X ,D) of (X,D) over a nonempty open subset U ⊂ Spec(OK) with gv = gD,v

for all v ∈ U . When D is a divisor we say that D is an adelic divisor.
We say that D is an adelic R-divisor over D and conversely, we say that D is the

geometric R-divisor of D.
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Unless otherwise stated, given an adelic R-divisor D on X we use the same letter
D to denote its geometric R-divisor and we denote by (gD,v)v∈MK

its family of Green
functions.

The set of adelic R-divisors forms a real vector space that we denote by D̂iv(X)R,

and the subgroup of adelic divisors is denoted by D̂iv(X).

Example 2.2. Let (φv)v∈MK
with φv ∈ C(Xan

v )Gv for each v ∈ MK and φv = 0 for
all except finitely many v. Then (0, (φv)v∈MK

) is an adelic divisor over 0 ∈ Div(X).
Every adelic divisor over the zero divisor of X is of this form.

Denote by [∞] = (0, (φv)v∈MK
) ∈ D̂iv(X) the adelic divisor over 0 ∈ Div(X)R

given by the constant functions φv = 1 if v is Archimedean, and φv = 0 if v is

non-Archidemedean. Then for D ∈ D̂iv(X)R and t ∈ R we set

D(t) = D − t [∞] ∈ D̂iv(X)R. (2.1)

Given f ∈ Rat(X)× we set d̂iv(f) = (div(f), (− log |fanv |v)v∈MK
) for its associated

principal divisor. This assignment extends by linearity to a map

d̂iv : Rat(X)×R −→ D̂iv(X)R.

Two adelic R-divisors D,D′ ∈ D̂iv(X)R are said linearly equivalent, denoted D ≡ D′,

when there is f ∈ Rat(X)×R such that D′ = D + d̂iv(f).

For D ∈ D̂iv(X)R and a morphism ϕ : X ′ → X from a normal projective variety

X ′ whose image is not contained in supp(D), the pullback ϕ∗D ∈ D̂iv(X ′)R is defined
as the R-divisor ϕ∗D equipped at each place v ∈ MK with the pullback to (X ′)anv of
gD,v by the v-adic analytification of ϕ.

For D ∈ Div(X)R and v ∈ MK let gv be a v-adic Green function for D. We say that
gv is semipositive when it is of (C0 ∩ PSH)-type in the sense of [Mor16, Section 1.4 and
Definition 2.1.6]. In the Archimedean case this means that gv is plurisubharmonic,
whereas in the non-Archimedean case it means that gv can be uniformly approached by
the v-adic Green functions of a sequence of vertically nef models. On the other hand,
we say that gv is DSP (short for difference of semipositive) if there are semipositive
v-adic Green functions g1,v and g2,v such that gv = g1,v − g2,v. Note that if D admits

a semipositive v-adic Green function then it is nef, and in particular vol(D) = (Dd).
Passing to the global situation, an adelic R-divisor D is semipositive if all its v-

adic Green functions are semipositive, and is DSP if there are two semipositive adelic
R-divisors D1, D2 such that D = D1 −D2. We denote by

D̂SP(X)R ⊂ D̂iv(X)R

the subspace of DSP adelic R-divisors of X.

Remark 2.3. To an adelic divisor D = (D, (gv)v∈MK
) on X one can associate a

metrized line bundle L = (OX(D), (∥.∥v)v∈MK
) on X in the sense of Zhang [Zha95b],

and every such metrized line bundle can be constructed in this way [BMPS16, Propo-
sition 3.8]. The metrized line bundle L is semipositive in the sense of [Zha95b] if and
only if D is semipositive, and it is integrable in the sense of [Zha95b] if and only if D
is DSP.
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2.2. Heights of points and cycles. Given D ∈ D̂iv(X)R and x ∈ X(K), the height
of x with respect to D is defined as

hD(x) =
∑

v∈MK

nv
#O(x)v

∑
y∈O(x)v

gD′,v(y) ∈ R

for any D′ ∈ D̂iv(X)R with D′ ≡ D such that x /∈ supp(D′)(K). This quantity does
not depend on the choice of D′ thanks to the product formula.

For an integer 0 ≤ r ≤ d let Z be an r-dimensional cycle of X and Di, i = 1, . . . , r,
a family of adelic R-divisors on X. Let v ∈ MK and assume that gDi,v

is DSP for
all i. Then there is a signed measure on Xan

v , denoted by

c1(D1,v) ∧ · · · ∧ c1(Dr,v) ∧ δZan
v
,

supported on Zan
v and with total mass (D1 · · ·Dr · Z). When the Di’s are divi-

sors, it is defined using the complex Monge-Ampère operator in the Archimedean
case, whereas in the non-Archimedean case it is the signed measure introduced by
Chambert-Loir [Cha06]. This construction extends by multilinearity and continuity
to the general case of adelic R-divisors with DSP v-adic Green functions. When these
v-adic Green functions are semipositive, it is actually a measure.

In the case when Z = X and D1 = · · · = Dd = D, this signed measure is called
the v-adic Monge-Ampère measure of D and denoted by c1(Dv)

∧d.
Assume now that D1, . . . , Dr are DSP, and let Dr+1 be a further adelic R-divisor

on X. The height hD1,...,Dr+1
(Z) of Z with respect to D1, . . . , Dr+1 is defined by

induction on the dimension r of the cycle. When r = 0 it is given by linearity from
the previous definition of height of points, whereas when r > 0 it is given by the
arithmetic Bézout formula:

hD1,...,Dr+1
(Z) = hD1,...,Dr

(D′ · Z)

+
∑

v∈MK

nv

∫
Xan

v

gD′,v c1(D1,v) ∧ · · · ∧ c1(Dr,v) ∧ δZan
v

(2.2)

for any D′ ∈ D̂iv(X)R with D′ ≡ Dr+1 such that D′ intersects Z properly, where
D′ ·Z is the intersection cycle. This Bézout formula is well-defined because the v-adic
Green function gD′,v is integrable with respect to the signed measure therein [CT09,

Theorem 4.1]. Furthermore, it does not depend on the choice ofD′ and it is multilinear

in D1, . . . , Dr+1 [BPS14, Section 1.5], [BMPS16, page 225]. If Dr+1 ∈ D̂SP(X)R this

construction is symmetric in D1, . . . , Dr+1. For D ∈ D̂SP(X)R we write hD(Z) for

the height of Z with respect to r + 1 copies of D.

For Di ∈ D̂SP(X)R, i = 1, . . . , d, and Dd+1 ∈ D̂iv(X)R, we define their arithmetic
intersection number as

(D1 · · ·Dd+1) = hD1,...,Dd+1
(X) ∈ R.

This quantity only depends on the linear equivalence classes of these adelic R-divisors,
and for any normal modification ϕ : X ′ → X we have

(ϕ∗D1 · · ·ϕ∗Dd+1) = (D1 · · ·Dd+1).
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It follows from these definitions that for any adelic divisor 0 = (0, (φv)v∈MK
) over

the zero divisor of X we have

(D1 · · ·Dd · 0) =
∑

v∈MK

nv

∫
Xan

v

φv c1(D1,v) ∧ · · · ∧ c1(Dd,v). (2.3)

In particular,

(D1 · · ·Dd · [∞]) =
∑

v∈M∞
K

nv

∫
Xan

v

c1(D1,v) ∧ · · · ∧ c1(Dd,v) = (D1 · · ·Dd). (2.4)

2.3. Arithmetic volumes and positivity. Let D ∈ D̂iv(X)R. Given a nonzero
global section s = (f,D) ∈ Γ(X,D)\{0}, for each point y ∈ Xan

v \supp(div(s))anv we set

∥s(y)∥D,v = exp(−g
D+d̂iv(f),v

(y)).

By [Mor16, Propositions 1.4.2 and 2.1.3], this assignment can be uniquely extended to
a continuous real-valued function y ∈ Xan

v 7→ ∥s(y)∥D,v ∈ R, called the v-adic norm
of s. We also set

∥s∥D,v,sup = sup
y∈Xan

v

∥s(y)∥D,v.

The height of a point outside the support of a global section can be bounded from
below in terms of these sup-norms: for m ∈ N>0 and s ∈ Γ(X,mD) \ {0} we have

hD(x) ≥ − 1

m

∑
v∈MK

nv log ∥s∥D,v,sup for all x ∈ X(K) \ supp(div(s))(K). (2.5)

For s ∈ Γ(X,D) \ {0} we say that s is small if ∥s∥D,v,sup ≤ 1 for all v ∈ MK , and

by convention we agree that 0 ∈ Γ(X,D) is small. We denote by Γ̂(X,D) the set of
small global sections of D.

Let AK be the ring of adèles of K and consider the adelic unit ball

BD = {(sv)v∈MK
∈ Γ(X,D)⊗K AK | ∥sv∥D,v,sup ≤ 1 for all v ∈ MK}.

We have that Γ(X,D) ⊗K AK is a locally compact group and Γ(X,D) is a lattice
within it via the diagonal embedding K ↪→ AK . We denote by µ the unique Haar
measure on Γ(X,D)⊗K AK satisfying

µ((Γ(X,D)⊗K AK)/Γ(X,D)) = 1

and we set χ̂(X,D) = log(µ(BD)).

Definition 2.4. The arithmetic volume and the χ-volume of D are respectively de-
fined as

v̂ol(D) =
1

[K : Q]
lim sup
m→∞

log(#Γ̂(X,mD))

md+1/(d+ 1)!
,

v̂olχ(D) =
1

[K : Q]
lim sup
m→∞

χ̂(X,mD)

md+1/(d+ 1)!
.

We now recall classical positivity notions for adelic R-divisors.

Definition 2.5. We say that D is

(1) effective if D is effective and gD,v ≥ 0 on Xan
v \ supp(D)anv for all v ∈ MK ,

(2) big if v̂ol(D) > 0,



APPROXIMATION OF ADELIC DIVISORS AND EQUIDISTRIBUTION 17

(3) pseudo-effective if D +B is big for every big B ∈ D̂iv(X)R,

(4) nef if D is semipositive and hD(x) ≥ 0 for all x ∈ X(K).

In the sequel we recall the basic properties of the arithmetic volume and the χ-
volume, referring to [Mor16] for the details and proofs.

Remark 2.6. Unlike [Mor16], here we do not assume that X is geometrically irre-
ducible. In this more general situation the Stein factorization shows that there is a
finite extension K ′/K with the property that the structural morphism X → Spec(K)
factors through a morphism X → Spec(K ′) and that X is geometrically connected
over K ′. Since X is normal, it is geometrically irreducible as a variety over K ′ and all
the cited results from loc. cit. extend directly to our setting.

For any normal modification ϕ : X ′ → X we have

v̂ol(ϕ∗D) = v̂ol(D) and v̂olχ(ϕ
∗D) = v̂olχ(D),

and moreover v̂ol(D) ≥ v̂olχ(D) [Mor16, Section 4.3]. By [Mor16, Theorem 5.2.1] we

also have the following continuity property: for every E ∈ D̂iv(X)R,

v̂ol(D) = lim
λ→0

v̂ol(D + λE) and v̂olχ(D) = lim
λ→0

v̂olχ(D + λE).

When the geometric R-divisor D is big, a sufficiently large shift of D is big.

Lemma 2.7. If D is big then D + c [∞] is big for any sufficiently large c > 0.

Proof. For c ∈ R we have χ̂(X,D + c [∞]) = χ̂(X,D) + c [K : Q] dimK(Γ(X,D)) by
the definition of these quantities. Hence

v̂ol(D + c [∞]) ≥ v̂olχ(D + c [∞]) = v̂olχ(D) + c (d+ 1) vol(D),

which readily implies the statement because vol(D) > 0. □

Now let t ∈ R, and for each m ∈ N denote by Rt
m(D) the K-linear subspace of

Γ(X,mD) generated by Γ̂(X,mD(t)) with D(t) = D − t[∞] as in (2.1). Note that

Γ̂(X,mD(t)) is the set of global sections s ∈ Γ(X,mD) such that

log ∥s∥D,v,sup ≤

{
−mt if v is Archimedean,

0 otherwise.

Then we set

Rt(D) =
⊕
m∈N

Rt
m(D),

that is a graded subalgebra of the algebra of sections R(D). Its volume is the quantity

vol(Rt(D)) = lim sup
m→∞

dimK Rt
m(D)

md/d!
.

The next theorem is due to Chen, and allows to express the arithmetic volume of
a big adelic R-divisor in terms of the volumes of these graded subalgebras.

Theorem 2.8. If D is big then v̂ol(D) = (d+ 1)

∫ ∞

0
vol(Rt(D)) dt.
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Proof. When D is an adelic divisor, this formula is given by [Che10, Theorem 3.8] (see
also [Che11, Formula (5.2)]). It is also a consequence of the results of Boucksom and
Chen on arithmetic Okounkov bodies [BC11, Theorems 1.11 and 2.8], whose proof
can be carried out for adelic R-divisors using the extension of this theory in [Mor16,
Section 7.3]. □

Arithmetic (χ-)volumes coincide with arithmetic intersection numbers under suit-
able positivity conditions.

Theorem 2.9 ([Mor16, Theorem 5.3.2]). If D is semipositive then

v̂olχ(D) = (D
d+1

).

If moreover D is nef, then v̂ol(D) = v̂olχ(D) = (D
d+1

).

The existence of arithmetic Fujita approximations for adelic divisors was estab-
lished independently by Yuan [Yua09] and Chen [Che10]. We will use the following
extension to adelic R-divisors from [Mor16, Theorem 5.1.6].

Theorem 2.10. Assume that D is big. For each ε > 0 there exists a normal modifi-
cation ϕ : X ′ → X and a nef adelic R-divisor P on X ′ such that ϕ∗D − P is pseudo-
effective and

(P
d+1

) = v̂ol(P ) ≥ v̂ol(D)− ε.

Yuan’s arithmetic analogue of Siu’s inequality is a key ingredient for equidistri-
bution results in Arakelov geometry [Yua08, Theorem 2.2]. We will use the next
extension to adelic R-divisors, which follows from the original one by the continuity
of the χ-volume function as in [CM15, Proof of Theorem 7.5].

Theorem 2.11. Let P 1, P 2 be nef adelic R-divisors on X. Then

v̂olχ(P 1 − P 2) ≥ (P
d+1
1 )− (d+ 1) (P

d
1 · P 2).

We now turn to other positivity aspects of adelic R-divisors. First note that if

there is s ∈ Γ̂(X,D) \ {0} then for every big B ∈ D̂iv(X)R and m ∈ N>0 we have an
inclusion

Γ̂(X,mB) ↪−→ Γ̂(X,m(D +B))

given by the multiplication by s⊗m. Hence v̂ol(D+B) ≥ v̂ol(B) > 0 and D is pseudo-
effective. In particular, an effective adelic R-divisor is pseudo-effective. Moreover, a
nef adelic R-divisor is also pseudo-effective [Mor16, Proposition 4.4.2(2)].

We need the following version of the well-known fact that adelic R-divisors can be
approximated by DSP adelic R-divisors.

Lemma 2.12. Let E ∈ D̂iv(X)R. Then for each ε > 0 there exists E
′ ∈ D̂SP(X)R

over E such that E − E
′
is effective and E

′
+ ε[∞]− E is pseudo-effective.

Proof. By [Mor16, Theorem 4.1.3] there is a finite set S ⊂ MK containing M∞
K such

that for each ε′ > 0 there is a model (X , E) of (X,E) over Spec(OK) such that setting
g
E

′
,v
= gE,v and φv = gE,v − g

E
′
,v
for every non-Archimedean place v we have φv = 0

for v /∈ S and 0 ≤ φv ≤ ε′ for v ∈ S \M∞
K . Applying the Stone-Weierstrass theorem

one can also show that for every Archimedean place v there is a smooth v-adic Green
function g

E
′
,v
on E such that φv = gE,v − g

E
′
,v
also satisfies 0 ≤ φv ≤ ε′.



APPROXIMATION OF ADELIC DIVISORS AND EQUIDISTRIBUTION 19

By construction, E
′
= (E, (g

E
′
,v
)v∈MK

) is a DSP adelic R-divisor over E and

E−E′
= (0, (φv)v∈MK

) is effective. Moreover, taking ε′ sufficiently small with respect
to ε we get from [BMPS16, Lemma 1.11] that a sufficiently high multiple of

E
′
+ ε[∞]− E = ε[∞]− (0, (φv)v)

has a nonzero small global section. Thus E
′
+ ε[∞]− E is pseudo-effective. □

Lemma 2.13. Let D1, . . . , Dd be nef adelic R-divisors on X. For every Dd+1, D′
d+1 ∈

D̂iv(X)R with Dd+1 −D′
d+1 pseudo-effective we have

(D1 · · ·Dd ·D′
d+1) ≤ (D1 · · ·Dd ·Dd+1).

Proof. Setting E = Dd+1 −D′
d+1, the inequality is equivalent to the fact that

(D1 · · ·Dd · E) ≥ 0.

The case when E is DSP is given by [Mor16, Proposition 4.5.4(3)]. For the general

case, let ε > 0 and take E
′
as in Lemma 2.12. Then E −E

′
is effective and E

′
+ ε[∞]

is both DSP and pseudo-effective, and so from the formulae (2.3) and (2.4) we get

(D1 · · ·Dd · E) ≥ (D1 · · ·Dd · E
′
) ≥ (D1 · · ·Dd · (−ε[∞])) = −ε (D1 · · ·Dd).

The result follows by letting ε→ 0. □

We will also need the following auxiliary result.

Lemma 2.14. Let E ∈ D̂SP(X)R. Then there exist big and nef N1, N2 ∈ D̂iv(X)R
such that E = N1 −N2.

Proof. By definition, there are semipositiveD1, D2 ∈ D̂iv(X)R such that E = D1−D2.
Take any semipositive A ∈ Div(X)R with A ample. Then both D1 and D2 are nef,
and so both A+D1 and A+D2 are ample. It follows from the inequality (2.5) that
the height functions

hD1+A, hD2+A : X(K) −→ R
are bounded from below by a real number. Taking a sufficiently large t ∈ R and letting
N i = Di + A + t [∞], i = 1, 2, we have that N i is nef, and it is big by Lemma 2.7.
Since E = N1 −N2, the lemma is proven. □

2.4. Absolute and essential minima. Let D ∈ D̂iv(X)R. Its absolute minimum is

µabs(D) = inf
x∈X(K)

hD(x).

Clearly µabs(ϕ∗D) = µabs(D) for any surjective morphism ϕ : X ′ → X with X ′ pro-
jective and normal. We also have µabs(D) > −∞ whenever D is semiample.

By definition, D is nef if and only if it is semipositive and µabs(D) ≥ 0. Note that
for t ∈ R we have

hD(t)(x) = hD(x)− t for x ∈ X(K),

and so when D is semipositive we have

µabs(D) = sup{t ∈ R | D(t) is nef }. (2.6)

The following lower bound for the height of effective cycles is a consequence of
Zhang’s theorem on minima [Zha95a, Theorem 5.2].
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Lemma 2.15. Let Z be an effective cycle of X of dimension r. If D is semipositive
then

hD(Z) ≥ (r + 1)µabs(D) (Dr · Z).
In particular, if D is nef then hD(Z) ≥ 0.

Proof. By linearity we may assume that Z is a subvariety. WhenD is ample, the result

follows then from [Bal24, Corollary 2.9]. For the general case, choose A ∈ D̂iv(X)R
semipositive with A ample. Then for any ε > 0 we have that D+ εA is ample and so

hD+εA(Z) ≥ (r + 1)µabs(D + εA) ((D + εA)r · Z)

≥ (r + 1) (µabs(D) + εµabs(A)) ((D + εA)r · Z).
We conclude by letting ε→ 0 and using multilinearity. □

The essential minimum of D is the quantity

µess(D) = sup
Y ⊊X

inf
x∈(X\Y )(K)

hD(x),

where the supremum is over the closed subsets Y ⊊ X. We have µess(ϕ∗D) = µess(D)
for any dominant and generically finite morphism ϕ : X ′ → X with X ′ projective
and normal [BPS15, Proposition 3.4]. We also have µess(D) < ∞, and µess(D) ∈ R
whenever R(D) ̸= {0} [BC11, Proposition 2.6].

Lemma 2.16. Let D1, D2 ∈ D̂iv(X)R. Then

(1) µess(D1 +D2) ≥ µess(D1) + µess(D2),

(2) if D1 is big then limλ→0 µ
ess(D1 + λD2) = µess(D1),

(3) for every t ∈ R such that Rt(D1) ̸= {0} we have µess(D1) ≥ t,

(4) if D1 is big and D1 −D2 is pseudo-effective then µess(D1) ≥ µess(D2).

Proof. The first two points can be found in [Bal21, Lemma 3.15], whereas the third is
a direct consequence of the inequality (2.5).

For (4) choose B ∈ D̂iv(X)R big and ε > 0. Then D1+εB−D2 is big and therefore
R0(D1 + εB −D2) ̸= 0. We deduce from (1) and (3)

µess(D1 + εB) ≥ µess(D1 + εB −D2) + µess(D2) ≥ µess(D2)

and conclude by letting ε→ 0 and using (2). □

The next result characterizes the essential mimimum of an adelic R-divisor with
big geometric R-divisor. It was obtained by the first author [Bal21, Theorem 1.1] as
a consequence of a theorem of Ikoma [Iko15], assuming that D is semipositive. This
condition was later removed thanks to the independent works of Qu and Yin [QY24]
and Szachniewicz [Sza23]. The next version follows by combining [Sza23, Lemma 3.3.5
and Theorem 3.3.7].

Theorem 2.17. We have

µess(D) ≤ sup{t ∈ R | D(t) is pseudo-effective},
with equality if D is big. In that case we also have

µess(D) = sup{t ∈ R | D(t) is big} = sup{t ∈ R | Rt(D) ̸= 0}.

We will also use the next variants of Zhang’s lower bound for the essential minimum
[Zha95a, Theorem 5.2].
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Theorem 2.18. If D is big then

µess(D) ≥ v̂olχ(D)

(d+ 1) vol(D)
.

Moreover, if D is big then

µess(D) ≥ v̂ol(D)

(d+ 1) vol(R0(D))
≥ v̂ol(D)

(d+ 1) vol(D)
.

Proof. The first inequality is [Bal21, Theorem 7.2(1)]. The second follows from The-
orem 2.8 and Lemma 2.16(3), which imply

v̂ol(D) = (d+ 1)

∫ µess(D)

0
vol(Rt(D))dt ≤ (d+ 1) vol(R0(D))µess(D).

□

Under mild positivity assumptions, the condition that Zhang’s lower bound is an
equality is equivalent to the fact that the essential and the absolute minima coincide.

Theorem 2.19 ([Bal24, Theorem 6.6]). Assume that D is semipositive and that D is
big. Then

µess(D) =
(D

d+1
)

(d+ 1) (Dd)
if and only if µess(D) = µabs(D).

2.5. Positive linear functionals on Gv-invariant functions. Let v ∈ MK and
recall that C(Xan

v )Gv denotes the space of Gv-invariant continuous real-valued func-
tions on Xan

v . By the Riesz representation theorem, any positive linear functional on
C(Xan

v ) corresponds to a measure on Xan
v . We need the following variant of this result

for positive linear functionals on C(Xan
v )Gv .

Lemma 2.20. Let Λ: C(Xan
v )Gv → R be a positive linear functional.

(1) There is a unique Gv-invariant measure ν on Xan
v such that

Λ(φ) =

∫
Xan

v

φdν for all φ ∈ C(Xan
v )Gv . (2.7)

(2) If (νn)n is a sequence of Gv-invariant measures on Xan
v such that

lim
n→∞

∫
Xan

v

φdνn = Λ(φ) for all φ ∈ C(Xan
v )Gv ,

then limn→∞ νn = ν.

Proof. For (1), let V ⊂ C(Xan
v ) be the subspace of continuous real-valued functions

on Xan
v that are Gal(Kv/K

′
v)-invariant for some finite extension K ′/K. By [Yua08,

“Equivalence” at page 638] (see also [GM22, Proposition 2.11 and Theorem 2.13]) this
subspace is dense in C(Xan

v ) with respect to the supremum norm.
For each φ ∈ V let K ′/K be a finite extension such that φ is Gal(Kv/K

′
v)-invariant

and set

φ̃ =
1

#Gal(K ′
v/Kv)

∑
σ∈Gal(K′

v/Kv)

σ∗φ.

This is an element of C(Xan
v )Gv that does not depend on the choice of this finite exten-

sion. We extend Λ to a Gv-invariant positive linear functional Λ̃ : V → R by setting
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Λ̃(φ) = Λ(φ̃), and then by continuity to a Gv-invariant positive linear functional on
C(Xan

v ). By the Riesz representation theorem there is a Gv-invariant measure ν on
Xan

v that satisfies (2.7).
If ν ′ is another Gv-invariant measure on Xan

v satisfying this equality on C(Xan
v )Gv

then it also does on V . Therefore ν ′ = ν by the density of this subspace.
To prove (2), for each φ ∈ V we have∫

Xan
v

φdνn =

∫
Xan

v

φ̃ dνn −−−→
n→∞

∫
Xan

v

φ̃ dν =

∫
Xan

v

φdν

by the Gv-invariance of the measures νn, n ∈ N, and ν. The statement then follows
from the density of V . □

Finally we recall a basic instance of Lemma 2.20(1). For φ ∈ C(Xan
v )Gv we have

that φ is a v-adic Green function over the zero divisor of X, and we define the adelic
divisor 0

φ
by equipping this divisor with φ at v and the zero function at every other

place. The assignment

φ 7−→ 0
φ

(2.8)

gives an inclusion C(Xan
v )Gv ↪→ D̂iv(X)R. Now if D is a semipositive adelic R-divisor

on X, for each φ ∈ C(Xan
v )Gv we have

(D
d · 0φ) = nv

∫
Xan

v

φ c1(Dv)
∧d (2.9)

by the formula in (2.3). Hence the positive linear functional C(Xan
v )Gv → R defined

by φ 7→ (D
d · 0φ) is represented by the Gv-invariant measure nv c1(Dv)

∧d.

3. Fujita approximations and positive intersection numbers

In this section we revisit Chen’s theorem on the differentiability of the arithmetic
volume [Che11] to express the derivative of this function at a big adelic R-divisor in
terms of arithmetic Fujita approximations. This will allow us to characterize in terms
of such approximations the arithmetic positive intersection numbers that are relevant
to our results.

3.1. Differentiability of concave functions. We first recall the notion of differen-
tiability of functions on real vector spaces and its relation to concavity. Our ambient
will be a real vector space V endowed with the topology defined by declaring that a
subset U ⊂ V is open whenever its restriction to any finite-dimensional affine subspace
H ⊂ V is open with respect to the Euclidean topology of H.

Definition 3.1. Let Φ: U → R be a function on an open subset U ⊂ V . For a point
x ∈ U and a linear subspace W ⊂ V we say that Φ is differentiable at x along W if
for all z ∈W the one-sided derivative

∂zΦ(x) = lim
λ→0+

Φ(x+ λ z)− Φ(x)

λ

exists in R and the map z ∈W → ∂zΦ(x) ∈ R is linear. When W = V , we simply say
that Φ is differentiable at x.

A real-valued function Φ on a subset U ⊂ V is concave when U is convex and

Φ(λx+ (1− λ)y) ≥ λΦ(x) + (1− λ)Φ(y) for all x, y ∈ U and 0 ≤ λ ≤ 1.
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Lemma 3.2. Let Φ: U → R be a concave function on an open convex subset of V
and let x ∈ U . Then

(1) for all z ∈ V the one-sided derivative ∂zΦ(x) exists in R and ∂zΦ(x) ≤ −∂−zΦ(x),

(2) the function Φ is differentiable at x along a linear subspace W ⊂ V if and only if
∂zΦ(x) = −∂−zΦ(x) for all z ∈W .

Proof. For (1) let a > 0 be a real number sufficiently small so that x+ λz ∈ U for all
−a < λ < a. Let ι : (−a, a) → V be the inclusion map defined as ι(λ) = x + λz, so
that the function ι∗Φ: (−a, a) → R is concave. Then the functions r−, r+ : (0, a) → R
respectively defined as

r−(λ) =
ι∗Φ(−λ)− ι∗Φ(0)

−λ
and r+(λ) =

ι∗Φ(λ)− ι∗Φ(0)

λ

verify that r− is non-decreasing, r+ is non-increasing, and r−(λ) ≥ r+(λ) for every λ.
Hence both converge when λ→ 0+ and

−∂−zΦ(x) = lim
λ→0+

r−(λ) ≥ lim
λ→0+

r+(λ) = ∂zΦ(x).

For (2) it is clear that the differentiability of Φ at x alongW implies that ∂zΦ(x) =
−∂−zΦ(x) for all z ∈ W . Conversely, let z1, z2 ∈ W and suppose that this condition
holds for these two vectors. For λ > 0 small we deduce from the concavity of Φ that

Φ(x+ λ(z1 + z2))− Φ(x)

λ
≥ Φ(x+ 2λz1)− Φ(x)

2λ
+

Φ(x+ 2λz2)− Φ(x)

2λ
.

Letting λ → 0+ we get ∂z1+z2Φ(x) ≥ ∂z1Φ(x) + ∂z2Φ(x). Applying this inequality to
−z1,−z2 together with (1) we obtain

−∂−z1Φ(x)− ∂−z2Φ(x) ≥ −∂−z1−z2Φ(x) ≥ ∂z1+z2Φ(x) ≥ ∂z1Φ(x) + ∂z2Φ(x).

By assumption the extremes in these inequalities coincide, and so ∂z1+z2Φ(x) =
∂z1Φ(x) + ∂z2Φ(x). In addition, the one-sided derivative is positive homogeneous
of degree 1 and so linear, as stated. □

3.2. The differentiability of the arithmetic volume. Let D be a big adelic R-
divisor on X.

Definition 3.3. A Fujita approximation sequence of D is a sequence (ϕn, Pn)n satis-
fying the following conditions:

(1) ϕn : Xn → X is a normal modification,

(2) Pn is a nef adelic R-divisor on Xn with ϕ∗D − Pn pseudo-effective,

(3) lim
n→∞

(P
d+1
n ) = v̂ol(D).

The existence of Fujita approximation sequences is warranted by Theorem 2.10.
The next result is a variant of Chen’s differentiability theorem [Che11] and shows
that the derivative of the arithmetic volume function can be realized in terms of any
such sequence. Its proof follows closely that of Chen.

Theorem 3.4. The arithmetic volume function is differentiable at D, and for any
Fujita approximation sequence (ϕn, Pn)n of D we have

∂E v̂ol(D) = (d+ 1) lim
n→∞

(P
d
n · ϕ∗nE) for all E ∈ D̂iv(X)R.

We need the following consequence of the arithmetic Siu’s inequality (Theorem 2.11).
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Lemma 3.5. Let P and E be two adelic R-divisors on X with P nef, and A a big
and nef adelic R-divisor on X such that A−P is pseudo-effective and A±E are nef.
There exists a constant cd depending only on d such that

v̂ol(P + λE) ≥ (P
d+1

) + (d+ 1) (P
d · E)λ− cd v̂ol(A)λ

2 for all λ ∈ [0, 1].

Proof. This is given by [Iko15, Proposition 5.1] in the case when all non-Archimedean
Green functions are induced by an integral model. The general case follows from this
by continuity. □

Proof of Theorem 3.4. Consider the function Φ = v̂ol
1

d+1 on the big cone of D̂iv(X)R.
It is positive homogeneous of degree 1 and super-additive by the Brunn-Minkowski in-
equality, and its domain is an open cone [Mor16, Theorems 5.2.1 and 5.3.1]. Therefore
it is a concave function on a convex open subset of a real vector space.

Let E ∈ D̂iv(X)R. Applying Lemma 3.2 to this concave function and noting that

v̂ol = Φd+1 we deduce that the one-sided derivative ∂E v̂ol(D) exists in R and moreover

−∂−E v̂ol(D) ≥ ∂E v̂ol(D). We claim that

∂E v̂ol(D) ≥ (d+ 1) lim sup
n→∞

(P
d
n · ϕ∗nE). (3.1)

To prove this, we first assume that E is DSP. By Lemma 2.14 there is a big and
nef adelic R-divisor A on X such that A ± E are nef. Replacing A by a sufficiently
large multiple we can also assume that A−D is pseudo-effective, which implies that
ϕ∗nA− Pn is pseudo-effective for all n. By Lemma 3.5 there exists c > 0 such that

v̂ol(D + λE) ≥ v̂ol(Pn + λϕ∗nE) ≥ (P
d+1
n ) + (d+ 1)λ (P

d
n · ϕ∗nE)− c λ2

for all 0 < λ ≤ 1 and n ∈ N. Taking the lim sup with respect to n we deduce

v̂ol(D + λE)− v̂ol(D)

λ
≥ (d+ 1) lim sup

n→∞
(P

d
n · ϕ∗nE)− c λ,

and we obtain (3.1) in this case by letting λ→ 0.

For the general case, let ε > 0. By Lemma 2.12 there is E
′ ∈ D̂SP(X)R such that

E − E
′
and E

′
+ ε[∞] − E are pseudo-effective. Then ∂E v̂ol(D) ≥ ∂

E
′ v̂ol(D), and

using Lemma 2.13, the formula in (2.4) and the fact that (P d
n) = vol(Pn) we obtain

(P
d
n · ϕ∗nE

′
) ≥ (P

d
n · ϕ∗n(E − ε[∞])) = (P

d
n · ϕ∗nE)− ε vol(Pn) ≥ (P

d
n · ϕ∗nE)− ε vol(D)

for all n. From the DSP case we deduce

∂E v̂ol(D) ≥ (d+ 1)
(
lim sup
n→∞

(P
d
n · ϕ∗nE)− ε vol(D)

)
,

and so (3.1) follows by letting ε→ 0. Applying this inequality to −E we obtain

(d+ 1) lim inf
n→∞

(P
d
n · ϕ∗nE) ≥ −∂−E v̂ol(D) ≥ ∂E v̂ol(D) ≥ (d+ 1) lim sup

n→∞
(P

d
n · ϕ∗nE).

This implies that ∂E v̂ol(D) = (d+1) limn→∞ (P
d
n ·ϕ∗nE), including the fact that this

limit exists in R and that v̂ol is differentiable at D. □

Combining this with Chen’s formula for the arithmetic volume (Theorem 2.8) we
obtain useful information about the asymptotics of Fujita approximation sequences.
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Proposition 3.6. Let (ϕn, Pn)n be a Fujita approximation sequence of D. Then

lim
n→∞

(P
d
n ·D) = v̂ol(D), lim

n→∞
(P d

n) = vol(R0(D)), lim
n→∞

µess(Pn) = µess(D).

Proof. The first formula follows from Theorem 3.4 after noting that ∂D v̂ol(D) =

(d+ 1)v̂ol(D) by the positive homogeneity of the arithmetic volume.
For the second, for all λ > −µess(D) we have that D + λ[∞] is big and

v̂ol(D + λ[∞]) = (d+ 1)

∫ ∞

0
vol(Rt(D + λ[∞])) dt = (d+ 1)

∫ ∞

−λ
vol(Rt(D)) dt

by Theorems 2.17 and 2.8. Since the function t 7→ vol(Rt(D)) is non-increasing, this
integral formula implies

∂[∞] v̂ol(D) = (d+ 1) lim
λ→0−

vol(Rλ(D)), −∂−[∞] v̂ol(D) = (d+ 1) lim
λ→0+

vol(Rλ(D)).

By Theorem 3.4 these two quantities coincide and so ∂[∞] v̂ol(D) = (d+1) vol(R0(D)),

and moreover this derivative equals (d+ 1) limn→∞(P
d
n · [∞]) = (d+ 1) limn→∞(P d

n).
For the third, assume by contradiction that there exists γ < µess(D) such that

µess(Pn) ≤ γ for an arbitrarily large n and set

c = (d+ 1)

∫ µess(D)

γ
vol(Rt(D)) dt.

We have c = v̂ol(D(γ)) > 0 by Theorem 2.17. Since D− ϕ∗nPn is pseudo-effective, by
Theorem 2.8 and Lemma 2.16(3) we have

v̂ol(Pn) = (d+ 1)

∫ µess(Pn)

0
vol(Rt(Pn)) dt ≤ (d+ 1)

∫ γ

0
vol(Rt(D)) dt ≤ v̂ol(D)− c,

which contradicts the last condition in Definition 3.3. □

Definition 3.7. For each E ∈ D̂iv(X)R, the arithmetic positive intersection number

(⟨Dd⟩ · E) is defined as

(⟨Dd⟩ · E) = lim
n→∞

(P
d
n · ϕ∗nE)

for any Fujita approximation sequence (ϕn, Pn)n of D. By Theorem 3.4 this limit
exists and does not depend on the choice of the sequence.

Remark 3.8. Our definition of the quantity (⟨Dd⟩·E) agrees with that of Chen [Che11]

since both coincide with (d + 1)−1∂E v̂ol(D). The alternative approach from Defini-
tion 3.7 is better suited for our purposes.

Remark 3.9. One can similarly adapt the proof of Boucksom, Favre and Jonsson’s
differentiability theorem [BFJ09] to show that for D,E ∈ Div(X)R with D big, the
geometric positive intersection number (⟨Dd−1⟩ · E) introduced in loc. cit. can be
expressed as

(⟨Dd−1⟩ · E) = lim
n→∞

(P d−1
n · ϕ∗nE)

for any sequence (ϕn, Pn)n such that Pn is a nef R-divisor on a normal modification
ϕn : Xn → X with ϕ∗nD − Pn pseudo-effective and limn→∞(P d

n) = vol(D).
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With this definition, the first and second formulae in Proposition 3.6 become

(⟨Dd⟩ ·D) = v̂ol(D) and (⟨Dd⟩ · [∞]) = vol(R0(D)). (3.2)

The first of them is [Che11, Corollary 4.4] and is usually interpreted as an asymptotic
orthogonality for the Fujita approximations of D.

These arithmetic positive intersections numbers allow to define the linear functional

ΩD : D̂iv(X)R −→ R, E 7−→ (⟨Dd⟩ · E)

vol(R0(D))
. (3.3)

By Proposition 3.6, for any Fujita approximation sequence (ϕn, Pn)n of D we have

ΩD(E) = lim
n→∞

(P
d
n · ϕ∗nE)

(P d
n)

for all E ∈ D̂iv(X)R. (3.4)

Remark 3.10. This linear functional verifies that ΩD(E) ≥ 0 for every E ∈ D̂iv(X)R

pseudo-effective, ΩD(d̂iv(f)) = 0 for every f ∈ Rat(X)×R and ΩD([∞]) = 1, as it fol-
lows respectively from Lemma 2.13, the invariance of arithmetic intersection numbers
with respect to linear equivalence, and the second formula in (3.2). In particular, ΩD
is a normalized GVF functional in the sense of [Sza23].

For each v ∈ MK we have that ΩD induces a positive linear functional on C(Xan
v )Gv

through the inclusion in (2.8). Hence by Lemma 2.20(1) there is a unique Gv-invariant
measure ωD,v on Xan

v such that

ΩD(0
φ
) =

(⟨Dd⟩ · 0φ)
vol(R0(D))

= nv

∫
Xan

v

φdωD,v for all φ ∈ C(Xan
v )Gv . (3.5)

It follows from the limit formula in (3.4) together with (2.9) that for any Fujita
approximation sequence (ϕn, Pn)n of D we have∫

Xan
v

φdωD,v = lim
n→∞

∫
Xan

v

φdωn,v for all φ ∈ C(Xan
v )Gv

with ωn,v the pushforward to Xan
v of c1(Pn,v)

∧d/(P d
n). Hence by Lemma 2.20(2) we

have ωD,v = limn→∞ ωn,v. In particular, ωD,v is a probability measure.

4. The differentiability of the essential minimum

The differentiability of the essential minimum at an adelic R-divisor D is closely
related to the asymptotic behavior of theD-small generic sequences of algebraic points.
After explaining this relation we state our central result, giving the differentiability of
this function assuming the existence of suitable semipositive approximations of D. We
then explain how it implies both Yuan’s and Chen’s equidistribution theorems [Yua08,
Che11]. Finally we give a reformulation of this result in terms of arithmetic positive
intersection numbers.

Throughout this section we letD be an adelic R-divisor onX over a big R-divisorD.
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4.1. The variational approach to limit heights and equidistribution. As noted
in Section 2.4, the essential minimum function

µess : D̂iv(X)R −→ R ∪ {−∞}

takes finite values on the open cone C ⊂ D̂iv(X)R of adelic R-divisors with big geo-
metric R-divisor. Moreover, it is positive homogeneous of degree 1 and super-additive
by Lemma 2.16. Therefore it is a concave function on C. By Lemma 3.2, for every

E ∈ D̂iv(X)R the one-sided derivative ∂E µ
ess(D) exists in R and we have

−∂−E µ
ess(D) ≥ ∂E µ

ess(D).

Definition 4.1. A sequence (xℓ)ℓ in X(K) is generic if for every closed subset Y ⊊ X
there is ℓ0 ∈ N such that xℓ /∈ Y (K) for all ℓ ≥ ℓ0. When this is the case, we say that
(xℓ)ℓ is D-small if

lim
ℓ→∞

hD(xℓ) = µess(D).

In the sequel, every considered generic sequence of algebraic points lies in X(K)
unless otherwise stated.

By [BPRS19, Proposition 3.2] for every generic sequence (xℓ)ℓ we have

lim inf
ℓ→∞

hD(xℓ) ≥ µess(D),

and moreover there are generic sequences that are D-small. A similar conclusion holds
for the heights ofD-small generic sequences with respect to another adelic R-divisor E,
replacing the quantity µess(D) by the one-sided derivative ∂E µ

ess(D).

Lemma 4.2. Let E ∈ D̂iv(X)R. For every D-small generic sequence (xℓ)ℓ we have

−∂−E µ
ess(D) ≥ lim sup

ℓ→∞
hE(xℓ) ≥ lim inf

ℓ→∞
hE(xℓ) ≥ ∂E µ

ess(D).

Moreover, there exists a D-small generic sequence (xℓ)ℓ such that

lim
ℓ→∞

hE(xℓ) = ∂E µ
ess(D).

Proof. For aD-small generic sequence (xℓ)ℓ and λ > 0 we have lim infℓ→∞ hD+λE(xℓ) ≥
µess(D + λE) and so

lim inf
ℓ→∞

hE(xℓ) = lim inf
ℓ→∞

hD+λE(xℓ)− hD(xℓ)

λ
≥ µess(D + λE)− µess(D)

λ
.

Therefore lim infℓ→∞ hE(xℓ) ≥ ∂E µ
ess(D), and we complete the proof of the first

statement by applying this to −E.
We now pass to the second. By homogeneity, after multiplying E by a sufficiently

small positive constant we assume without loss of generality that D + E is big. For
each n ∈ N>0 we choose a generic sequence (xn,ℓ)ℓ such that

lim
ℓ→∞

hD+ 1
n
E(xn,ℓ) = µess

(
D +

1

n
E
)
. (4.1)

Let Hi, i ∈ N, be the collection of all the hypersurfaces of X in an arbitrary order.
Then for each n we use (4.1) and the genericity of the sequence (xn,ℓ)ℓ to choose

ℓ(n) ∈ N such that the algebraic point yn = xn,ℓ(n) ∈ X(K) satisfies the conditions:

(1) yn /∈
⋃n

i=0Hi,
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(2) hD+ 1
n
E(yn) ≤ µess(D + 1

nE) + 1/n2,

(3) hD(yn) ≥ µess(D)− 1/n2.

By (1) the sequence (yn)n is generic. Since D + E is big, this implies that there
is c ∈ R such that hD+E(yn) ≥ c for all n, thanks to the lower bound (2.5). Then it
follows from the condition (2) that

hD(yn) =
n

n− 1

(
hD+ 1

n
E(yn)−

1

n
hD+E(yn)

)
≤ n

n− 1
µess

(
D+

1

n
E
)
+

1

n(n− 1)
− c

n− 1
.

Therefore the sequence (yn)n is also D-small by the continuity of the essential mini-
mum (Lemma 2.16(2)). On the other hand, the conditions (2) and (3) give

− 1

n2
+

1

n
hE(yn) ≤ hD(yn) +

1

n
hE(yn)− µess(D)

= hD+ 1
n
E(yn)− µess(D) ≤ µess

(
D +

1

n
E
)
− µess(D) +

1

n2
,

which implies

lim sup
n→∞

hE(yn) ≤ lim
n→∞

n
(
µess(D +

1

n
E)− µess(D)

)
= ∂E µ

ess(D).

We conclude that limn→∞ hE(yn) = ∂E µ
ess(D), as stated. □

Proposition 4.3. Let E ∈ D̂iv(X)R. The following conditions are equivalent:

(1) for every D-small generic sequence (xℓ)ℓ the limit limℓ→∞ hE(xℓ) exists,

(2) ∂−E µ
ess(D) = −∂E µess(D).

If they are satisfied, then limℓ→∞ hE(xℓ) = ∂E µ
ess(D) for every D-small generic se-

quence (xℓ)ℓ.

Proof. The implication (2) ⇒ (1) is given by the first part of Lemma 4.2. Con-
versely, suppose that (1) holds. Then limℓ→∞ hE(xℓ) = ∂E µ

ess(D) for every D-small
generic sequence (xℓ)ℓ. Indeed, if the limit were different then using the second part of
Lemma 4.2 we could construct a D-small generic sequence (x′ℓ)ℓ such that (hE(x

′
ℓ))ℓ

does not converge. Moreover, applying the latter to −E gives that every D-small
generic sequence (xℓ)ℓ verifies

∂−E µ
ess(D) = lim

ℓ→∞
h−E(xℓ) = − lim

ℓ→∞
hE(xℓ) = −∂E µ

ess(D),

which gives (2). □

The next result summarizes the relation between limit heights for D-small se-
quences of algebraic points and the differentiability of the essential minimum function.
It is a direct consequence of the previous one together with Lemma 3.2(2).

Proposition 4.4. The following conditions are equivalent:

(1) for every D-small generic sequence (xℓ)ℓ in X(K) and E ∈ D̂iv(X)R the limit
limℓ→∞ hE(xℓ) exists,

(2) the essential minimum function is differentiable at D.

If they are satisfied, then for any D-small generic sequence (xℓ)ℓ in X(K) we have

lim
ℓ→∞

hE(xℓ) = ∂E µ
ess(D) for all E ∈ D̂iv(X)R.
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Let v ∈ MK . For x ∈ X(K) we denote by δO(x)v the uniform probability measure
on the v-adic Galois orbit of this point, that is

δO(x)v =
1

#O(x)v

∑
y∈O(x)v

δy.

Definition 4.5. We say that D satisfies the equidistribution property at v if there is
a probability measure νD,v on Xan

v such that for every D-small generic sequence (xℓ)ℓ,

the sequence of measures (δO(xℓ)v)ℓ converges to νD,v. When this holds, νD,v is called

the (v-adic) equidistribution measure of D.

Note that if D satisfies the equidistribution property at a place v then its equidis-
tribution measure νD,v is Gv-invariant, being the limit of a sequence of Gv-invariant
discrete probability measures.

The next result gives the relation between the equidistribution property at v and the
differentiability of the essential minimum function along the subspace of Gv-invariant
continuous real-valued functions on Xan

v .

Proposition 4.6. The following conditions are equivalent:

(1) D satisfies the equidistribution property at v,

(2) the essential minimum function is differentiable at D along C(Xan
v )Gv .

If they are satisfied, then the equidistribution measure νD,v is the unique Gv-invariant
measure on Xan

v such that

nv

∫
Xan

v

φdνD,v = ∂0φ µ
ess(D) for all φ ∈ C(Xan

v )Gv .

Proof. For every φ ∈ C(Xan
v )Gv and x ∈ X(K) we have

h0φ(x) =
nv

#O(x)v

∑
y∈O(x)v

φ(y) = nv

∫
Xan

v

φdδO(x)v .

The statement then follows from Proposition 4.3 with Lemmas 3.2(2) and 2.20. □

4.2. Main theorem. Recall that D is an adelic R-divisor on X with D big.

Definition 4.7. A semipositive approximation of D is a pair (ϕ,Q) where

(1) ϕ : X ′ → X is a normal modification,

(2) Q is a semipositive adelic R-divisor on X ′ with big geometric R-divisor Q,

(3) ϕ∗D −Q is pseudo-effective.

When ϕ is the identity on X, we simply denote by Q the semipositive approximation
of D corresponding to the pair (IdX , Q).

The following is the central result of this text.

Theorem 4.8. Assume that there exists a sequence (ϕn, Qn)n of semipositive approx-
imations of D such that

lim
n→∞

µess(D)− µabs(Qn)

r(Qn;ϕ∗nD)
= 0. (4.2)
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Then the essential minimum function is differentiable at D and

∂E µ
ess(D) = lim

n→∞

(Q
d
n · ϕ∗nE)− dµess(D) (Qd−1

n · ϕ∗nE)

(Qd
n)

for all E ∈ D̂iv(X)R.

In particular, the limit on the right-hand side exists in R and does not depend on the
choice of the sequence.

This result together with Proposition 4.4 show that ifD satisfies the condition (4.2),

then for any D-small generic sequence (xℓ)ℓ and E ∈ D̂iv(X)R we have

lim
ℓ→∞

hE(xℓ) = lim
n→∞

(Q
d
n · ϕ∗nE)− dµess(D) (Qd−1

n · ϕ∗nE)

(Qd
n)

.

In particular, D satisfies the equidistribution property at each place v ∈ MK and its
v-adic equidistribution measure is given by

νD,v = lim
n→∞

νn,v

where νn,v denotes the pushforward to Xan
v of the normalized Monge-Ampère measure

c1(Qn,v)
∧d/(Qd

n), as stated in Theorem 2.

Remark 4.9. The inradius r(Qn;ϕ
∗
nD) in Theorem 4.8 measures the bigness of the

geometric R-divisor Qn for each n. For our purposes this invariant is finer than
the geometric volume vol(Qn) = (Qd

n). Indeed, for any ample A ∈ Div(X)R with
A − D pseudo-effective we have that ϕ∗nA − Qn is pseudo-effective for all n, and so
r(Qn;ϕ

∗
nD) ≥ (Qd

n)/(d (A
d)) by Lemma 1.4. Hence any sequence of semipositive

approximations (ϕn, Qn)n of D such that

lim
n→∞

µess(D)− µabs(Qn)

(Qd
n)

= 0

also satisfies (4.2). When X is a curve this condition is equivalent to (4.2) but is
stronger in higher dimensions, as it can be seen for instance in the semiabelian setting
(Remark 7.12).

Remark 4.10. We assume throughout that X is normal because we do not consider
adelic R-divisors on an arbitrary projective variety. Nevertheless, Theorem 4.8 can be
applied to study the equidistribution properties of an adelic divisor D on an arbitrary
projective variety X over K. Indeed, since all the data is invariant under birational
modifications one can reduce to the normal case by working on the normalization.

4.3. Application to classical equidistribution results. Yuan’s equidistribution
theorem (Theorem 1) is a direct consequence of Theorem 4.8, which moreover shows
that this result is valid for any adelic R-divisor with big geometric R-divisor and gives
the differentiability of the essential minimum function. These slight improvements
could already be obtained by adapting Yuan’s proof.

Corollary 4.11. Assume that D is semipositive and that

µess(D) =
(D

d+1
)

(d+ 1) (Dd)
.

Then the essential minimum function is differentiable at D and

∂E µ
ess(D) =

(D
d · E)− dµess(D) (Dd−1 · E)

(Dd)
for all E ∈ D̂iv(X)R.
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In particular, D satisfies the v-adic equidistribution property at each v ∈ MK with
equidistribution measure νD,v = c1(Dv)

∧d/(Dd).

Proof. Apply Theorem 4.8 to the sequence of semipositive approximations Qn = D,
n ∈ N. By Theorem 2.19 we have µabs(D) = µess(D) and so (4.2) is verified. □

The following corollary recovers Chen’s equidistribution theorem [Che11, Corol-
lary 5.5]. As shown in loc. cit., this result is a consequence of the differentiability of
the arithmetic volume. We shall explain how to deduce it from Theorem 4.8.

Corollary 4.12. Assume that D is big and that

µess(D) =
v̂ol(D)

(d+ 1) vol(D)
.

Then the essential minimum function is differentiable at D and

∂E µ
ess(D) =

(⟨Dd⟩ · E)− dµess(D) (⟨Dd−1⟩ · E)

vol(D)
for all E ∈ D̂iv(X)R.

In particular, D satisfies the v-adic equidistribution property at each v ∈ MK , with
equidistribution measure νD,v = ωD,v.

Here ωD,v is the probability measure on Xan
v in (3.5) and (⟨Dd−1⟩ · E) is the

geometric positive intersection number from [BFJ09] (see Remark 3.9). We need the
next lemma to construct a suitable sequence of semipositive approximations of D.

Lemma 4.13. For every real numbers t < µess(D) and ε > 0 there exists a semiposi-
tive approximation (ϕ,Q) of D such that

µabs(Q) ≥ t, |(Qd)−vol(Rt(D))| ≤ ε, |(Qd+1
)−v̂ol(D(t))−(d+1)t vol(Rt(D))| ≤ ε.

Proof. By Theorem 2.17, D(t) is big. Then by Proposition 3.6 applied to D(t), for
any ε′ > 0 there is a nef adelic R-divisor P on a normal modification ϕ : X ′ → X with
ϕ∗D(t)− P pseudo-effective such that

|(P d)− vol(Rt(D))| ≤ ε′ and |(P d+1
)− v̂ol(D(t))| ≤ ε′. (4.3)

Set Q = P (−t) = P+t[∞]. By construction, (ϕ,Q) is a semipositive approximation
of D. Since P is nef we have µabs(Q) = µabs(P )+t ≥ t, which gives the first condition.
By (2.4) we also have

(Qd) = (P d) and (Q
d+1

) = (P
d+1

) + (d+ 1) t (Qd),

and so the second and third conditions follow from (4.3). □

Proof of Corollary 4.12. By Theorem 2.8 and Lemma 2.16(3) we have

µess(D) =
v̂ol(D)

(d+ 1) vol(D)
=

1

vol(D)

∫ µess(D)

0
vol(Rt(D)) dt.

Since vol(Rt(D)) ≤ vol(D) we get vol(Rt(D)) = vol(D) for all 0 ≤ t ≤ µess(D). Hence
by the same results, for t in this range we have

v̂ol(D(t)) = v̂ol(D)− (d+ 1) t vol(D).
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Applying Lemma 4.13 we deduce that there is a sequence (ϕn, Qn)n of semipositive
approximations of D such that

lim
n→∞

(Q
d+1
n ) = v̂ol(D), lim

n→∞
(Qd

n) = vol(D), lim
n→∞

µabs(Qn) = µess(D).

Hence by Remark 4.9 the sequence (ϕn, Qn)n satisfies the condition (4.2). Since
µess(D) > 0, we have that Qn is nef for sufficiently large n and therefore (ϕn, Qn)n
is a Fujita approximation sequence of D. By the definition of arithmetic positive
intersection numbers and Remark 3.9 we have

lim
n→∞

(Q
d
n · ϕ∗nE) = (⟨Dd⟩ · E) and lim

n→∞
(Qd−1

n · ϕ∗nE) = (⟨Dd−1⟩ · E).

The result then follows from Theorem 4.8. □

Remark 4.14. Chen’s equidistribution theorem implies Yuan’s. Indeed, for D semi-
positive the statement of the latter is invariant under shifts of this adelic R-divisor by
multiples of [∞]. Hence we can suppose without loss of generality that D is big and
nef, in which case Corollary 4.12 specializes to Corollary 4.11.

4.4. Interpretation in terms of arithmetic positive intersection numbers.
Here we propose a reformulation of Theorem 4.8 that gives a more intrinsic condition
for the differentiability of the essential minimum function and shows that the derivative
can be computed using limits of arithmetic positive intersection numbers. As before,
we let D be an R-divisor on X with D big.

We define the inradius of a big adelic R-divisor as the supremum of the geometric
inradii of its nef approximations.

Definition 4.15. Let B be a big adelic R-divisor on X. A nef approximation of B is
a semipositive approximation (ϕ, P ) of B such that P is nef. We denote by Θ(B) the
set of nef approximations of B.

For a big R-divisor A on X, the inradius of B with respect to A is defined as

ρ(B;A) = sup{r(P ;ϕ∗A) | (ϕ, P ) ∈ Θ(B)}.

This is a positive real number. We also set ρ(B) = ρ(B;B) for the inradius of B with
respect to its geometric R-divisor B, which is big.

In the next result and similar ones, the limits when t tends to the essential minimum
are taken from below. Note that for every real number t < µess(D) we have that D(t)
is big by Theorem 2.17, and so the inradius ρ(D(t)) is well-defined.

Theorem 4.16. Assume that

lim inf
t→µess(D)

µess(D)− t

ρ(D(t))
= 0. (4.4)

Then the essential minimum function is differentiable at D and

∂E µ
ess(D) = lim

t→µess(D)

(⟨D(t)d⟩ · E)

vol(Rt(D))
for all E ∈ D̂iv(X)R. (4.5)

We can reformulate accordingly the asymptotic behavior of heights and Galois
orbits of the algebraic points in a D-small generic sequence: by Proposition 4.3,
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this result shows that if D satisfies the condition (4.4) then for any D-small generic

sequence (xℓ)ℓ and E ∈ D̂iv(X)R we have

lim
ℓ→∞

hE(xℓ) = lim
t→µess(D)

(⟨D(t)d⟩ · E)

vol(Rt(D))
.

In particular, D satisfies the equidistribution property at each place v ∈ MK and its
v-adic equidistribution measure is given by

νD,v = lim
t→µess(D)

ωD(t),v,

where ωD(t),v is the probability measure on Xan
v from (3.5).

We first observe that the conditions in Theorems 4.8 and 4.16 are equivalent.

Lemma 4.17. The condition (4.4) holds if and only if there exists a sequence (ϕn, Qn)n
of semipositive approximations of D satisfying the condition (4.2).

Proof. First assume that (4.4) holds. Then there are sequences of real numbers tn <
µess(D), n ∈ N, and of nef approximations (ϕn, Pn) ∈ Θ(D(tn)), n ∈ N, such that

lim
n→∞

µess(D)− tn
r(Pn;ϕ∗nD)

= 0.

For each n put Qn = Pn(−tn). Then (ϕn, Qn) is a semipositive approximation of D
with Qn = Pn and µabs(Qn) = µabs(Pn) + tn ≥ tn. Therefore the sequence (ϕn, Qn)n
satisfies (4.2).

Conversely let (ϕn, Qn)n be a sequence of semipositive approximations of D satis-
fying (4.2). For each n set tn = µabs(Qn) and Pn = Qn(tn). Then Pn is nef since it
is semipositive and µabs(Pn) = µabs(Qn)− tn = 0. Moreover

ϕ∗nD(tn)− Pn = (ϕ∗nD − tn[∞])− (Qn − tn[∞]) = ϕ∗nD −Qn

is pseudo-effective. Therefore (ϕn, Pn) ∈ Θ(D(tn)) and in particular

ρ(D(tn)) ≥ r(Pn;ϕ
∗
nD) = r(Qn;ϕ

∗
nD).

Finally we have

0 ≤ lim inf
t→µess(D)

µess(D)− t

ρ(D(t))
≤ lim inf

n→∞

µess(D)− tn

ρ(D(tn))
≤ lim

n→∞

µess(D)− µabs(Qn)

r(Qn;ϕ∗nD)
= 0.

□

Note that for every t < µess(D) and E ∈ D̂iv(X)R we have

ΩD(t)(E) =
(⟨D(t)d⟩ · E)

vol(Rt(D))
,

where ΩD(t) : D̂iv(X)R → R is the linear functional defined in (3.3).

Lemma 4.18. For every E ∈ D̂iv(X)R we have

−∂−E µ
ess(D) ≥ lim sup

t→µess(D)

ΩD(t)(E) ≥ lim inf
t→µess(D)

ΩD(t)(E) ≥ ∂E µ
ess(D).

In particular, if the essential minimum function is differentiable at D then the limit
limt→µess(D)ΩD(t)(E) exists and equals ∂E µ

ess(D).
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Proof. Let t < µess(D). As observed in Remark 3.10, ΩD(t) takes nonnegative values

on pseudo-effective adelic R-divisors and verifies ΩD(t)([∞]) = 1. By Theorem 2.17,

for each λ > 0 we have that D + λE − µess(D + λE) [∞] is pseudo-effective and so

ΩD(t)(D) + λΩD(t)(E) = ΩD(t)(D + λE) ≥ µess(D + λE). (4.6)

On the other hand

ΩD(t)(D) = ΩD(t)(D(t)) + t =
v̂ol(D(t))

vol(Rt(D))
+ t ≤ (d+ 1)(µess(D)− t) + t

by the first formula in (3.2) and Zhang’s inequality (Theorem 2.18). Therefore

lim
t→µess(D)

ΩD(t)(D) = µess(D).

Taking the infimum limit as t approaches µess(D) from below in (4.6) then gives

lim inf
t→µess(D)

ΩD(t)(E) ≥ µess(D + λE)− µess(D)

λ
,

and we obtain lim inft→µess(D)ΩD(t)(E) ≥ ∂E µ
ess(D) by letting λ → 0. The rest of

the statement follows by applying this to −E. □

Proof of Theorem 4.16. If (4.4) holds, then by Lemma 4.17 and Theorem 4.8 the
essential minimum function is differentiable at D. The expression for the derivative
in (4.5) is given by Lemma 4.18. □

It would be very interesting to determine whether the condition in Theorem 4.16
is actually a criterion for the differentiability of the essential minimum.

Question 4.19. If the essential minimum function is differentiable at D, then does

lim inf
t→µess(D)

µess(D)− t

ρ(D(t))
= 0

necessarily hold? More optimistically, does this hold as soon as D has the equidistri-
bution property at every place?

In Section 5.5 we give a partial answer to this question.

5. Proof of Theorem 4.8 and complements

In this section we prove our main result and give some complements, including an
equidistribution theorem with a more flexible condition for the sequence of semipos-
itive approximations, a logarithmic equidistribution theorem, and a partial converse
to Theorem 4.8.

5.1. A consequence of the arithmetic Siu’s inequality. The following result is
a variant of Lemma 3.5 with an error term depending on an inradius.

Proposition 5.1. Let P ,E ∈ D̂iv(X)R with P big and P nef. Assume that there
exists a nef adelic R-divisor A on X such that A is big, A+E is pseudo-effective and
A− E is nef. There is a constant cd depending only on d such that for every λ ≥ 0

v̂olχ(P + λE) ≥ (P
d+1

) + (d+ 1) (P
d · E)λ− cd max

(
1,
( λ

r(P ;A)

)d−1) (P
d ·A)

r(P ;A)
λ2.
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Its proof combines Yuan’s arithmetic analogue of Siu’s inequality (Theorem 2.11)
with the following lemma, itself a consequence of the arithmetic Hodge index theorem
due to Yuan and Zhang [YZ17]. The first point is proven along the lines of [Iko15,
Theorem 2.7(2)].

Lemma 5.2. Let P and A be nef adelic R-divisors on X with P,A big. Then

(1) for i = 1, . . . , d we have (P d+1−i ·Ai−1) (P
d−i ·Ai+1

) ≤ 2 (P d−i ·Ai) (P
d+1−i ·Ai

),

(2) for i = 0, . . . , d we have (P
d−i ·Ai+1

) ≤
( 2

r(P ;A)

)i
(P

d ·A).

Proof. As P and A are big and nef we have (P d) = vol(P ) > 0 and (Ad) = vol(A) > 0,
which implies that (P d+1−i ·Ai−1) > 0 by [Laz04, Theorem 1.6.1]. Set

α =
(P d−i ·Ai)

(P d+1−i ·Ai−1)
,

so that ((A− αP ) · P d−i ·Ai−1) = 0. By the arithmetic Hodge index theorem [YZ17,
Theorem 2.2] (which remains valid for adelic R-divisors by [Iko15, Theorem 2.7(1)])
this implies

((A− αP )2 · P d−i ·Ai−1
) ≤ 0. (5.1)

On the other hand

((A− αP )2 · P d−i ·Ai−1
) = (P

d−i ·Ai+1
)− 2α (P

d+1−i ·Ai
) + α2 (P

d+2−i ·Ai−1
)

and (P
d+2−i ·Ai−1

) ≥ 0 since both P and A are nef. Therefore (1) follows from (5.1).
Note that (2) holds trivially for i = 0. We deduce the general case by induction

on i, applying (1) and the inequality

(P d−i ·Ai) ≤ 1

r(P ;A)
(P d+1−i ·Ai−1),

which follows from (1.1) and the fact that P − r(P ;A)A is pseudo-effective. □

Proof of Proposition 5.1. Set B = A− E. This is a nef adelic R-divisor on X and so
by Theorem 2.11 we have

v̂olχ(P + λE) = v̂olχ(P + λA− λB) ≥ ((P + λA)d+1)− (d+ 1) ((P + λA)d ·B)λ.

Expanding the right-hand side we find that it is equal to

(P
d+1

) + (d+ 1) (P
d · E)λ+

d+1∑
i=2

(
d+ 1

i

)
(P

d+1−i ·Ai
)λi

− (d+ 1)

d∑
i=1

(
d

i

)
(P

d−i ·Ai ·B)λi+1.

Since P and A are nef, the first sum is nonnegative and therefore

v̂olχ(P + λE) ≥ (P
d+1

) + (d+ 1) (P
d · E)λ− (d+ 1)

d∑
i=1

(
d

i

)
(P

d−i ·Ai ·B)λi+1.
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By Lemma 2.13 and the fact that 2A − B = A + E is pseudo-effective we have

(P
d−i ·Ai ·B) ≤ 2 (P

d−i ·Ai+1
), i = 1, . . . , d, and by Lemma 5.2(2),

(P
d−i ·Ai+1

) ≤
( 2

r(P ;A)

)i
(P

d ·A).

Therefore v̂olχ(P + λE) is bounded from below by

(P
d+1

) + (d+ 1) (P
d · E)λ− (d+ 1) (P

d ·A)
d∑

i=1

(
d

i

)
2i+1λi+1

r(P ;A)i
,

and the result follows. □

The following consequence of Proposition 5.1 plays a central role in our proof.

Corollary 5.3. Let P ,E ∈ D̂iv(X)R with P nef and P big. Assume that there exists
a nef adelic R-divisor A such that A is big, A + E is pseudo-effective and A − E is
nef. There exists a constant cd depending only on d such that

µess(P + λE) ≥ (P
d+1

)

(d+ 1) vol(P + λE)
+

(P
d · E)

(P d)
λ− cd

(P
d ·A)
(P d)

λ2

r(P ;A)

for every 0 ≤ λ < r(P ;A)/2. In particular, if E = 0 then

µess(P + λE) ≥ (P
d+1

)

(d+ 1)(P d)
+

(P
d · E)

(P d)
λ− cd

(P
d ·A)
(P d)

λ2

r(P ;A)
.

Proof. Let λ be a real number with 0 ≤ λ < r(P ;A)/2. By Lemma 1.5 we have(
1− λ

r(P ;A)

)d
(P d) ≤ vol(P + λE) ≤

(
1 +

λ

r(P ;A)

)d
(P d). (5.2)

In particular, P + λE is big. By Zhang’s inequality (Theorem 2.18) we have

µess(P + λE) ≥ v̂olχ(P + λE)

(d+ 1) vol(P + λE)
.

Therefore Proposition 5.1 implies that

µess(P+λE) ≥ (P
d+1

)

(d+ 1) vol(P + λE)
+

(P
d · E)

vol(P + λE)
λ−cd

(P
d ·A)

vol(P + λE)

λ2

r(P ;A)
(5.3)

for a constant cd > 0 depending only on d. By (5.2) we have

(P
d ·A)

vol(P + λE)
≤
(
1− λ

r(P ;A)

)−d (P
d ·A)
(P d)

≤ 2d
(P

d ·A)
(P d)

.

On the other hand, by Lemma 2.13 we have |(P d · E)| ≤ (P
d · A) since P is nef and

A ± E are pseudo-effective. Set a = 1 if (P
d · E) ≥ 0 and a = −1 otherwise. Then

by (5.2) we have

(P
d · E)

vol(P + λE)
≥ (P

d · E)

(P d)

(
1 + a

λ

r(P ;A)

)−d

≥ (P
d · E)

(P d)
− c′d

|(P d · E)|
(P d)

λ

r(P ;A)
≥ (P

d · E)

(P d)
− c′d

(P
d ·A)
(P d)

λ

r(P ;A)
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for some constant c′d depending only on d. The result follows by combining these
inequalities with (5.3). □

5.2. Proof of Theorem 4.8. Let D ∈ D̂iv(X)R with D big and (ϕn, Qn)n a sequence
of semipositive approximations of D satisfying the condition (4.2).

Lemma 5.4. For every big R-divisor A on X we have lim
n→∞

µess(D)− µabs(Qn)

r(Qn;ϕ∗nA)
= 0.

Proof. This a straightforward consequence of (4.2) thanks to Lemma 1.2. □

For each n ∈ N set

Q̃n = Qn − µabs(Qn) [∞] ∈ D̂iv(X)R.

Note that µabs(Q̃n) = µabs(Qn)− µabs(Qn) = 0 and therefore Q̃n is nef.

Lemma 5.5. Let E ∈ D̂iv(X)R. We have

(Q̃d
n · ϕ∗nE)

(Qd
n)

=
(Q

d
n · ϕ∗nE)− dµabs(Qn) (Q

d−1
n · ϕ∗nE)

(Qd
n)

for all n ∈ N

and lim
n→∞

((Q̃d
n · ϕ∗nE)

(Qd
n)

− (Q
d
n · ϕ∗nE)− dµess(D) (Qd−1

n · ϕ∗nE)

(Qd
n)

)
= 0.

Proof. The first equality follows from the multilinearity of the arithmetic intersection
product and the formula (2.4). For the second set

βn = (µess(D)− µabs(Qn))
(Qd−1

n · ϕ∗nE)

(Qd
n)

, n ∈ N,

so that this statement is equivalent to limn→∞ βn = 0. To see this, let A be an
ample divisor such that A ± E are big. We have |(Qd

n · ϕ∗nE)| ≤ (Qd
n · ϕ∗nA) by the

inequality (1.1), and using Lemma 1.3 we get

|βn| ≤ (µess(D)− µabs(Qn))
(Qd−1

n · ϕ∗nA)
(Qd

n)
≤ µess(D)− µabs(Qn)

r(Qn;ϕ∗nA)
.

We conclude with Lemma 5.4. □

Lemma 5.6. For every nef A ∈ D̂iv(X)R with A big we have sup
n∈N

(Q̃d
n · ϕ∗nA)
(Qd

n)
<∞.

Proof. Up to replacing A by εA for a small ε > 0 we can assume that D − A is big.
Then up to replacing A by A − c [∞] for c ∈ R sufficiently large we can furthermore
assume that D −A is big thanks to Lemma 2.7.

For every n ∈ N and λ > 0 we have

λ (Q̃d
n · ϕ∗nA) ≤

1

d+ 1
((Q̃n + λϕ∗nA)

d+1) ≤ ((Qn + λϕ∗nA)
d)µess(Q̃n + λϕ∗nA),

where the first inequality follows from the fact that both Q̃n and A are nef, and the
second from Zhang’s inequality (Theorem 2.18). By Lemma 2.16(4) and the fact that
ϕ∗nD −Qn and D −A are pseudo-effective we have

µess(Q̃n + λϕ∗nA) = µess(Qn + λϕ∗nA)− µabs(Qn) ≤ (1 + λ)µess(D)− µabs(Qn).

Set rn = r(Qn;ϕ
∗
nA) for short. Since Qn − rn ϕ

∗
nA is pseudo-effective we also have

((Qn + rnϕ
∗
nA)

d) = vol(Qn + rnϕ
∗
nA) ≤ vol(2Qn) = 2d(Qd

n).
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Combining the previous inequalities for λ = rn we get

rn (Q̃
d
n · ϕ∗nA) ≤ 2d ((1 + rn)µ

ess(D)− µabs(Qn)) (Q
d
n).

Hence
(Q̃d

n · ϕ∗nA)
(Qd

n)
≤ 2d

µess(D)− µabs(Qn)

rn
+ 2dµess(D).

By Lemma 5.4 the right-hand side is upper-bounded by some constant independent
of n, and the result follows. □

Proof of Theorem 4.8. Recall from Section 4.1 that for every E ∈ D̂iv(X)R, the one-
sided derivative ∂E µ

ess(D) exists and −∂−E µ
ess(D) ≥ ∂E µ

ess(D). We claim that

∂E µ
ess(D) ≥ lim sup

n→∞

(Q̃d
n · ϕ∗nE)

(Qd
n)

. (5.4)

We first prove this when E is DSP. In that case, by Lemma 2.14 there exists a big

and nef A ∈ D̂iv(X)R such that A± E are nef. By Lemma 5.6,

κ := sup
n∈N

(Q̃d
n · ϕ∗nA)
(Qd

n)

is a real number. For each n ∈ N and any λ ≥ 0 such that D + λE is big we have

µess(D + λE)− µabs(Qn) ≥ µess(Qn + λϕ∗nE)− µabs(Qn) = µess(Q̃n + λϕ∗nE)

by Lemma 2.16(4). Since Q̃n is nef we have (Q̃n)
d+1 ≥ 0, and so by Corollary 5.3

applied to P = Q̃n we get

µess(D + λE)− µabs(Qn) ≥
(Q̃d

n · ϕ∗nE)

(Qd
n)

λ− cd κ

r(Qn;ϕ∗nA)
λ2

for every 0 ≤ λ < r(Qn;ϕ
∗
nA)/2, where cd is a constant depending only on d. Rear-

ranging this we obtain

µess(D + λE)− µess(D)

λ
≥ (Q̃d

n · ϕ∗nE)

(Qd
n)

− µess(D))− µabs(Qn)

λ
− cd κ

r(Qn;ϕ∗nA)
λ. (5.5)

Set

γn =
µess(D)− µabs(Qn)

r(Qn;ϕ∗nA)
if µabs(Qn) ̸= µess(D) and γn =

1

n
otherwise,

and then λn = r(Qn;ϕ
∗
nA) γ

1/2
n . By Lemma 5.4 we have limn→∞ γn = 0 and so

limn→∞ λn = 0. Applying (5.5) with λ = λn gives

µess(D + λnE)− µess(D)

λn
≥ (Q̃d

n · ϕ∗nE)

(Qd
n)

− γ1/2n − cd κ γ
1/2
n ,

and we obtain (5.4) by letting n→ ∞.
We now consider the general case. By Lemma 2.12, for each ε > 0 there is a DSP

E
′ ∈ D̂iv(X)R with E − E

′
and E

′ − E + ε[∞] pseudo-effective. Then ∂E µ
ess(D) ≥

∂
E

′ µess(D) by Lemma 2.16(4), and Lemma 2.13 together with the formula (2.4) gives

(Q̃d
n · E′

) ≥ (Q̃d
n · (E − ε [∞])) = (Q̃d

n · E)− ε (Qd
n)
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for all n ∈ N. By the DSP case we obtain

∂E µ
ess(D) ≥ ∂

E
′ µess(D) ≥ lim sup

n→∞

(Q̃d
n · ϕ∗nE

′
)

(Qd
n)

≥ lim sup
n→∞

(Q̃d
n · ϕ∗nE)

(Qd
n)

− ε,

and we conclude by letting ε→ 0.
Finally, applying (5.4) to −E and E we get

lim inf
n→∞

(Q̃d
n · ϕ∗nE)

(Qd
n)

≥ −∂−E µ
ess(D) ≥ ∂E µ

ess(D) ≥ lim sup
n→∞

(Q̃d
n · ϕ∗nE)

(Qd
n)

.

Hence −∂−E µ
ess(D) = ∂E µ

ess(D), and we conclude with Lemmas 3.2 and 5.5. □

Remark 5.7. In the setting of Theorem 4.8, it follows from Lemma 5.5 that if the
condition (4.2) is satisfied then the derivatives of the essential minimum function at D
can be alternatively expressed as

∂E µ
ess(D) = lim

n→∞

(Q
d
n · ϕ∗nE)− dµabs(Qn) (Q

d−1
n · ϕ∗nE)

(Qd
n)

for all E ∈ D̂iv(X)R.

5.3. A variant of Theorem 4.8. In the course of the proof, when applying Corol-
lary 5.3 to produce the lower bound (5.5) we neglected the term

(Q̃d+1
n )

vol(Qn + λϕ∗nE)
.

As it turns out, taking this term into account gives no improvement for an arbitrary
adelic divisor E, though it does when E = 0. This leads to the following slight
refinement in this situation.

Theorem 5.8. Assume that there exists a sequence (ϕn, Qn)n of semipositive approx-
imations of D such that

lim
n→∞

1

r(Qn;ϕ∗nD)

(
µess(D)− (Q

d+1
n )

(d+ 1)(Qd
n)

)
= 0, sup

n∈N

µess(D)− µabs(Qn)

r(Qn;ϕ∗nD)
<∞. (5.6)

Then D satisfies the equidistribution property at every place v ∈ MK , and its v-adic
equidistribution measure is νD,v = limn→∞ νn,v with νn,v the pushforward to Xan

v of

the normalized Monge-Ampère measure c1(Qn,v)
∧d/(Qd

n).

We just outline the proof of this result, as it is almost the same as that of The-
orem 4.8. Let (ϕn, Qn)n be a sequence satisfying the conditions of Theorem 5.8 and

set Q̃n = Qn − µabs(Qn) [∞] for each n. With this notation, the proof of Lemma 5.6
remains valid thanks to the second condition in (5.6), and so

κ := sup
n∈N

(Q̃d
n · ϕ∗nA)
(Qd

n)
<∞.

By Proposition 4.6 and Lemma 3.2(2), it suffices to show that

−∂−E µ
ess(D) = ∂E µ

ess(D) = lim
n→∞

(Q
d
n · ϕ∗nE)

(Qd
n)

(5.7)

for any E ∈ D̂iv(X)R over 0. We only treat the case where E is DSP, as the general

one follows by density as in the proof of Theorem 4.8. Let A ∈ D̂iv(X)R be big and
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nef with A± E nef. By Corollary 5.3, there exists a constant cd such that

µess(D + λE)− µabs(Qn) ≥
(Q̃d+1

n )

(d+ 1) (Qd
n)

+
(Q̃d

n · ϕ∗nE)

(Qd
n)

λ− cd κ

r(Qn;ϕ∗nA)
λ2 (5.8)

for every n and 0 < λ ≤ r(Qn;ϕ
∗
nA)/2. Since E = 0, by the formula (2.4) we have

(Q̃d+1
n ) = (Q

d+1
n )− (d+ 1) (Qd

n)µ
abs(Qn) and (Q̃d

n · ϕ∗nE) = (Q
d
n · ϕ∗nE).

Combining this with (5.8) and dividing by λ gives

µess(D + λE)− µess(D)

λ
≥ (Q

d
n · ϕ∗nE)

(Qd
n)

+
( (Q

d+1
n )

(d+ 1)(Qd
n)

− µess(D)
) 1
λ
− cd κ

r(Qn;ϕ∗nA)
λ.

As in the proof of Theorem 4.8, a suitable choice of λ = λn permits to conclude that

∂E µ
ess(D) ≥ lim sup

n→∞

(Q
d
n · ϕ∗nE)

(Qd
n)

using the first condition in (5.6), and we obtain (5.7) by applying this to −E.

Remark 5.9. This result gives more flexibility to construct the sequence of semipos-
itive approximations (ϕn, Qn)n. For example, one can deduce Yuan’s equidistribution
theorem directly from Theorem 5.8 without using Theorem 2.19.

However, Theorem 5.8 is not more general than Theorem 4.8. In fact, starting with
a sequence (ϕn, Qn)n satisfying the conditions (5.6) one can modify it to construct
another sequence satisfying the condition (4.2), using arguments similar to those in
the proof of Lemma 4.13. Since we do not need this in the remainder of the text, we
skip the proof of this technical claim.

5.4. Logarithmic equidistribution. Let D be an adelic R-divisor on X with D
big such that there exists a sequence (ϕn, Qn)n of semipositive approximations of D
satisfying the condition of Theorem 4.8. By this result we have that D satisfies the
equidistribution property at every v ∈ MK with equidistribution measure

νD,v = lim
n→∞

νn,v,

where νn,v denotes the pushforward to Xan
v of the normalized v-adic Monge-Ampère

measure of Qn.
In this section we show that this property extends to functions with logarithmic

singularities along effective divisors satisfying a certain numerical condition. Our
presentation follows closely that of Chambert-Loir and Thuillier in [CT09], adapting
their arguments to our setting.

Definition 5.10. Let E be an effective divisor on X and v ∈ MK . A function
φ : Xan

v → R ∪ {±∞} has at most logarithmic singularities along E if it is a real-
valued continuous function on Xan

v \supp(E)anv and every x ∈ Xan
v has a neighborhood

U ⊂ Xan
v together with an equation fU of Ean

v on U and a real number cU such that

|φ|v ≤ cU log |fU |−1
v on U.

Equidistribution measures can integrate functions with at most logarithmic singu-
larities along a divisor.

Proposition 5.11. Let v ∈ MK and φ : Xan
v → R ∪ {±∞} a function with at most

logarithmic singularities along an effective divisor on X. Then φ is integrable with
respect to νD,v.
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For the proof of this proposition we need the next auxiliary result.

Lemma 5.12. For every E ∈ D̂iv(X)R with E effective we have

∂E µ
ess(D) ≥

∑
v∈MK

nv

∫
Xan

v

gE,v dνD,v.

Proof. Let n ∈ N. By Lemma 2.15 we have

hQn
([ϕ∗nE]) ≥ dµabs(Qn) (Q

d−1
n · ϕ∗nE), (5.9)

where the left-hand side denotes the height with respect to Qn of the R-Weil divisor
associated to ϕ∗nE. Applying the arithmetic Bézout formula (2.2) we deduce from this

(Q
d
n · ϕ∗nE)− dµabs(Qn) (Q

d−1
n · ϕ∗nE)

(Qd
n)

≥
∑

v∈MK

nv

∫
Xan

v

gE,v dνn,v.

Letting n→ ∞, by Theorem 4.8 and Remark 5.7 we have

∂E µ
ess(D) ≥ lim inf

n→∞

∑
v∈MK

nv

∫
Xan

v

gE,v dνn,v ≥
∑

v∈MK

nv lim inf
n→∞

∫
Xan

v

min(c, gE,v) dνn,v

for any c ∈ R. Since E is effective we have that gE,v is bounded from below and so

min(c, gE,v) ∈ C(Xan
v ) for every v. Then∑

v∈MK

nv lim inf
n→∞

∫
Xan

v

min(c, gE,v) dνn,v =
∑

v∈MK

nv

∫
Xan

v

min(c, gE,v) dνD,v

by the equidistribution property at every place. The statement follows by letting
c→ ∞ and applying the monotone convergence theorem. □

Proof of Proposition 5.11. Since Xan
v is compact, we can assume without loss of gener-

icity that φ = gE,v for an adelic divisor E over an effective E ∈ Div(X). Up to adding

an adelic divisor over 0 ∈ Div(X) we can furthermore assume that E is effective. In
this situation we have gE,w ≥ 0 for every w ∈ MK and so Lemma 5.12 implies

∞ > ∂E µ
ess(D) ≥ nv

∫
Xan

v

gE,v dνD,v,

and so gE,v is integrable with respect to νD,v. □

The following is the main result of this section.

Theorem 5.13. Let E ∈ D̂iv(X) with E effective such that

∂E µ
ess(D) =

∑
v∈MK

nv

∫
Xan

v

gE,v dνD,v. (5.10)

Then for every D-small generic sequence (xℓ)ℓ in X(K) and v ∈ MK we have

lim
ℓ→∞

∫
Xan

v

φdδO(xℓ)v =

∫
Xan

v

φdνD,v

for any function φ : Xan
v → R∪{±∞} with at most logarithmic singularities along E.
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Proof. By Proposition 5.11 and [CT09, Lemma 6.3] it suffices to consider the case
φ = gE,v. Then by Proposition 4.3 and Theorem 4.8 we have

∂E µ
ess(D) = lim

ℓ→∞
hE(xℓ) = lim

ℓ→∞

∑
v∈MK

nv

∫
Xan

v

gE,v dδO(xℓ)v ,

and so the condition (5.10) implies∑
v∈MK

nv

∫
Xan

v

gE,v dνD,v = lim
ℓ→∞

∑
v∈MK

nv

∫
Xan

v

gE,v dδO(xℓ)v

≥
∑

v∈MK

nv lim inf
ℓ→∞

∫
Xan

v

gE,v dδO(xℓ)v . (5.11)

On the other hand, for every v and any c ∈ R we have min(c, gE,v) ∈ C(Xan
v ) and so

lim inf
ℓ→∞

∫
Xan

v

gE,v dδO(xℓ)v ≥ lim inf
ℓ→∞

∫
Xan

v

min(c, gE,v) dδO(xℓ)v =

∫
Xan

v

min(c, gE,v) dνD,v

by the equidistribution property. Letting c→ ∞ we get that

lim inf
ℓ→∞

∫
Xan

v

gE,v dδO(xℓ)v ≥
∫
Xan

v

gE,v dνD,v.

Summing up these inequalities over all the places and taking (5.11) into account
we deduce that they are in in fact equalities. We conclude by observing that such
equality remains true when (xℓ)ℓ is replaced by an arbitrary ¡subsequence, since the
latter remains generic and D-small. Therefore

lim
ℓ→∞

∫
Xan

v

gE,v dδO(xℓ)v =

∫
Xan

v

gE,v dνD,v

as desired. □

Remark 5.14. The condition (5.10) is independent of the choice of the adelic struc-

ture over E. Indeed, let E
′
be another adelic divisor over E. Then there exists a finite

set S ⊂ MK and a collection φv ∈ C(Xan
v )Gv , v ∈ S, such that E

′ − E =
∑

v∈S 0
φv .

Since the essential minimum function is differentiable at D, we have

∂
E

′ µess(D) = ∂E µ
ess(D) +

∑
v∈S

∂0φv µess(D).

Setting φv = 0 for v ∈ MK \S, Proposition 4.6 together with (5.10) then gives

∂
E

′ µess(D) =
∑

v∈MK

nv

∫
Xan

v

(gE,v + φv) dνD,v =
∑

v∈MK

nv

∫
Xan

v

g
E

′
,v
dνD,v

and so E
′
also verifies this condition.

If the sequences of probability measures approaching the equidistribution measures
are eventually constant, we can rephrase the condition in Theorem 5.13 in terms of
the gaps in Zhang’s lower bound for the heights of Weil divisors in (5.9).
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Corollary 5.15. Assume that for every v ∈ MK the sequence of probability measures
(νn,v)n is eventually constant, and let E be an effective divisor on X such that

lim
n→∞

hQn
([ϕ∗nE])− dµabs(Qn) (Q

d−1
n · ϕ∗nE)

(Qd
n)

= 0.

Then for every D-small generic sequence (xℓ)ℓ in X(K) and v ∈ MK we have

lim
ℓ→∞

∫
Xan

v

φdδO(xℓ)v =

∫
Xan

v

φdνD,v

for any function φ : Xan
v → R∪{±∞} with at most logarithmic singularities along E.

Proof. Let E be an adelic divisor over E. By Remark 5.7 and the arithmetic Bézout
formula (2.2) we have

∂E µ
ess(D) = lim

n→∞

(hQn
([ϕ∗nE])− dµabs(Qn) (Q

d−1
n · ϕ∗nE)

(Qd
n)

+
∑

v∈MK

nv

∫
Xan

v

gE,v dνn,v

)

= lim
n→∞

hQn
([ϕ∗nE])− dµabs(Qn) (Q

d−1
n · ϕ∗nE)

(Qd
n)

+
∑

v∈MK

nv

∫
Xan

v

gE,v dνD,v,

and so E verifies the condition (5.10). □

Remark 5.16. The assumption in Corollary 5.15 that the sequences of probability
measures (νn,v)n are eventually constant is verified in the setting of dynamical systems
(Theorem 7.9). It would be interesting to know whether this corollary remains valid
without this technical assumption.

Corollary 5.15 allows to recover the logarithmic equidistribution theorem from
[CT09, Theorem 1.2] as follows. Let D be a semipositive adelic R-divisor on X with
D ample such that

µess(D) =
(D

d+1
)

(d+ 1)(Dd)
, (5.12)

and let E ∈ D̂iv(X) with E is effective such that

hD([E])

d (Dd−1 · E)
= µess(D).

By Theorem 2.19 the equality (5.12) implies µess(D) = µabs(D). Therefore the con-
dition of Corollary 5.15 is trivially satisfied for the constant sequence (ϕn, Qn) =
(IdX , D), n ∈ N, thus giving the stated equidistribution for functions with at most
logarithmic singularities along E.

5.5. A partial converse. The next result answers Question 4.19 under an additional
technical assumption, roughly saying that D has a suitable upper bound for which
Zhang’s inequality is an equality. As we will see in Section 6, this assumption is always
satisfied for semipositive toric adelic R-divisors (Proposition 6.10), which will allow
us to give an affirmative answer to this question in this setting (Theorem 6.9). As
before, we denote by D an adelic R-divisor on X with D big.

Proposition 5.17. Assume that there exists a semipositive adelic R-divisor D′
over D

such that D
′ − D is pseudo-effective and µess(D

′
) = µabs(D

′
) = µess(D). Then the

following conditions are equivalent:
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(1) lim
t→µess(D)

µess(D)− t

ρ(D(t))
= 0,

(2) the essential minimum function is differentiable at D,

(3) D has the equidistribution property at every place v ∈ MK .

We deduce this result as a special case of the next lemma.

Lemma 5.18. Assume that there exists a nef A ∈ D̂iv(X)R with A big such that
∂A µ

ess(D) = 0. Then the following conditions are equivalent:

(1) lim
t→µess(D)

µess(D)− t

ρ(D(t))
= 0,

(2) the essential minimum function is differentiable at D,

(3) ∂−A µ
ess(D) = 0.

If moreover A = D, then they are equivalent to the condition:

(4) D has the equidistribution property at every place v ∈ MK .

Proof. We have (1) ⇒ (2) by Theorem 4.16 and (2) ⇒ (3) is trivial. We next show
that (3) ⇒ (1). If (3) holds then by Lemma 4.18

lim
t→µess(D)

(⟨D(t)d⟩ ·A)
vol(Rt(D))

= 0. (5.13)

Fix a real number t < µess(D) and let (ϕn, Pn)n be a Fujita approximation sequence
of D(t). Then by Proposition 3.6

lim
n→∞

(P
d
n ·A)
(P d

n)
=

(⟨D(t)d⟩ ·A)
vol(Rt(D))

and lim
n→∞

µess(Pn) = µess(D)− t. (5.14)

Set P
′
n = Pn − µess(Pn) [∞], n ∈ N. Then P

′
n is pseudo-effective by Theorem 2.17,

and by the formula (2.4) we have

(P
d
n ·A)
(P d

n)
=

(P
d−1
n ·A · P ′

n)

(P d
n)

+ µess(Pn)
(P d−1

n ·A)
(P d

n)
.

Since Pn and A are nef, by Lemma 2.13 the first summand is non-negative and so

(P
d
n ·A)
(P d

n)
≥ µess(Pn)

(P d−1
n ·A)
(P d

n)
≥ µess(Pn)

d r(Pn;A)
≥ µess(Pn)

d ρ(D(t);A)
,

where the second inequality follows from Lemma 1.3 and the third from the definition
of the inradius of D(t) with respect to A. Letting n→ ∞ and applying (5.14) we get

(⟨D(t)d⟩ ·A)
vol(Rt(D))

≥ µess(D)− t

d ρ(D(t);A)
.

By Lemma 1.2 there is c > 0 such that ρ(D(t);A) ≤ c ρ(D(t);D) = c ρ(D(t)) for every
t < µess(D). Therefore (1) follows by letting t→ µess(D) and using (5.13).

For the last claim, by Proposition 4.6 and Lemma 3.2(2) the condition (4) is equiva-
lent to the fact that the essential minimum function is differentiable along the subspace
of adelic divisors on X over the zero divisor. In particular, it is implied by (2).

Now assume that A = D and that (4) holds. Then E := A−D is an adelic divisor
over E = 0 and so the essential minimum function is differentiable at D along E. Since
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this function is clearly differentiable along D, by Lemma 3.2(2) it is also differentiable
along A. This gives (3). □

Proof of Proposition 5.17. Let A = D
′ − µess(D) [∞]. Then µess(A) = µabs(A) = 0,

and in particular A is nef. Thus by Lemma 5.18 it suffices to show that ∂A µ
ess(D) = 0.

This is clear, since by Lemma 2.16(1) for every λ > 0 we have

µess(D + λA) ≥ µess(D) + λµess(A) = µess(D),

whereas Lemma 2.16(4) gives the converse inequality, namely

µess(D) = µess(D
′
) = µess(D

′
+ λD

′
)− λµess(D

′
) = µess(D

′
+ λA) ≥ µess(D + λA).

□

6. Toric varieties

Here we study the differentiability of the essential minimum function in the toric
setting and its consequences for the equidistribution of the Galois orbits of small
generic sequences of algebraic points. To this end, first we review the algebraic and
Arakelov geometries of toric varieties following [BPS14, BPS15, BMPS16, BPRS19]
and study the inradii and positive intersection numbers of (adelic) R-divisors on toric
varieties. We then prove our toric differentiability results (Theorems 6.6 and 6.9) and
extend the corresponding equidistribution properties to test functions with logarithmic
singularities along special hypersurfaces (Theorem 6.12 and Corollary 6.13).

6.1. Geometric and arithmetic aspects. Let T ≃ Gd
m be a split d-dimensional

torus over K and set

M = Hom(T,Gm) and N = Hom(Gm,T)

for its lattices of characters and of co-characters. These are both isomorphic to Zd

and dual of each other, that is M = N∨ and N = M∨. Set then NR = N ⊗Z R and
MR = M ⊗Z R. These vector spaces are also dual of each other, and for u ∈ NR and
x ∈MR we denote their pairing by ⟨u, x⟩. Let also K[M ] be the group algebra of M ,
and for each m ∈M let χm ∈ K[M ] be the corresponding monomial.

Let X be a projective toric variety with torus T and D a toric R-divisor on it. By
this we mean a normal projective variety over K containing T as an open subset and
equipped with an action of this torus extending its action onto itself by translations,
together with an R-divisor that is invariant under this action.

Classically toric varieties and R-divisors are constructed and classified with poly-
hedral objects. Thus to X and D respectively correspond a fan ΣX and an R-virtual
support function ΨD. The fan ΣX is a polyhedral complex of strongly convex cones
defined over N covering the whole of NR, whereas the R-virtual support function ΨD

is a real-valued function on NR that is linear on each of the cones of this fan. We also
associate to D the subset of MR defined as

∆D = {x ∈MR | ⟨u, x⟩ ≥ ΨD(u) for every u ∈ NR}.

It is a quasi-rational polytope, that is a polytope with rational slopes.
The positivity invariants and properties of D can be read from its R-virtual support

function and polytope. For instance, the volume of D is given by

vol(D) = d! volM (∆D)



46 BALLAŸ AND SOMBRA

where volM denotes the Haar measure on MR normalized so that M has covolume 1.
In particular, if D is nef then (Dd) = d! volM (∆D). More generally, for a family Di,
i = 1, . . . , d, of nef toric R-divisors on X we have

(D1 · · ·Dd) = MVM (∆D1 , . . . ,∆Dd
), (6.1)

where MVM denotes the mixed volume function with respect to volM .
The R-divisor D is pseudo-effective if and only if ∆D ̸= ∅, and is big if and only

if dim(∆D) = d. In addition, D is nef if and only if ΨD is concave. For a nef toric
R-divisor E we have that D−E is pseudo-effective if and only if there exists x ∈MR
such that x+∆E ⊂ ∆D. All of this can be found in [BMPS16, Section 4].

To study the arithmetic counterpart of these constructions and results, for each
place v ∈ MK we denote by Sv the compact torus of the v-adic analytic torus Tan

v

[BPS14, Section 4.2]. In the Archimedean case Sv is isomorphic to the real torus (S1)d,
whereas in the non-Archimedean case it is an analytic subgroup of Tan

v in the sense of
Berkovich. We also consider the valuation map

valv : Tan
v −→ NR.

With a splitting of the torus, we can identify the dense subset Tan
v (Cv) with (C×

v )
d and

the vector space NR with Rd. In these coordinates, the valuation map writes down as

valv(x1, . . . , xd) = (− log |x1|v, . . . ,− log |xd|v).
Now let D be a toric adelic R-divisor on X, that is an adelic R-divisor on X

whose geometric R-divisor D is toric and whose v-adic Green function gD,v is invariant
under the action of Sv for every v. Toric adelic R-divisors over D can be constructed
and classified with adelic families of functions on NR whose behavior at infinity is
governed by the R-virtual support function ΨD [BPS14, Proposition 4.3.10], [BMPS16,
Proposition 4.16]. Accordingly we denote by

ψD,v : NR −→ R, v ∈ MK ,

the family of metric functions associated to D. For each v, the v-adic metric function
is defined as

ψD,v(u) = −gD,v(x) for every u ∈ NR and x ∈ val−1
v (u). (6.2)

It is continuous and has bounded difference with respect to ΨD for every v, and it is
equal to ΨD for all but a finite number of places.

We also associate to D its family of local roof functions

ϑD,v : ∆D −→ R, v ∈ MK .

For each v, the v-adic roof function is a continuous concave function on the polytope
that is defined as

ϑD,v(x) = inf
u∈NR

⟨u, x⟩ − ψD,v(u) for every x ∈ ∆D.

These functions are zero for all but a finite number of places. We consider then the
global roof function ϑD : ∆D → R, defined as the weighted sum

ϑD =
∑

v∈MK

nvϑD,v.

We also consider the compact convex set where this concave function is nonnegative:

ΓD = {x ∈ ∆D | ϑD(x) ≥ 0}. (6.3)
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In analogy with the geometric case, the positivity invariants and properties of D
can be read from its metric and roof functions. For instance, the essential minimum
of D is the maximum of its global roof function [BPS15, Theorem 1.1]:

µess(D) = max
x∈∆D

ϑD(x). (6.4)

Moreover, if D is semipositive then µabs(D) = minx∈∆D
ϑD(x) [BPS15, Remark 3.15].

The volumes of D can be computed as [BMPS16, Theorem 5.6]

v̂ol(D) = (d+ 1)!

∫
ΓD

ϑD dvolM and v̂olχ(D) = (d+ 1)!

∫
∆D

ϑD dvolM .

In particular, if D is semipositive then (D
d+1

) = (d + 1)!
∫
∆D

ϑD dvolM . More gen-

erally, the arithmetic intersection number of a family of semipositive toric adelic R-
divisors Di, i = 0, . . . , d, can be computed as

(D0 · · ·Dd) =
∑

v∈MK

nv MIM (ϑD0,v
, . . . , ϑDd,v

), (6.5)

where MIM denotes the mixed integral function with respect to the Haar measure
volM on MR [BPS14, Theorem 5.2.5].

We have that D is semipositive if and only if ψD,v is concave for every v [BMPS16,

Proposition 4.19]. By Theorem 6.1 in loc. cit. we have that D is pseudo-effective
if and only if there exists x ∈ ∆D such that ϑD(x) ≥ 0 or equivalently, if and only

if ΓD ̸= ∅. We also have that D is big if and only if dim(∆D) = d and there exists
x ∈ ∆D such that ϑD(x) > 0, in which case ΓD is a convex body. By the same result,

when D is semipositive then it is nef if and only of ϑD(x) ≥ 0 for every x ∈ ∆D.

For a semipositive adelic R-divisor E on X we have that D−E is pseudo-effective if
and only if ∆E ⊂ ∆D and ϑE,v(x) ≤ ϑD,v(x) for every v ∈ MK and x ∈ ∆E [BMPS16,

Proposition 6.4 and Theorem 7.2(1)].
If D is big, then for any sequence (Λn)n of quasi-rational polytopes uniformly

approaching the convex body ΓD from inside one can construct a Fujita approximation

sequence of D

(ϕn : Xn → X,Pn)n (6.6)

such that both ϕn and Pn are toric for each n. The modification ϕn : Xn → X is toric
if Xn is also a toric variety with the same torus T and the restriction of ϕn to this
torus is the identity. At the combinatorial level, a toric modification corresponds to a
(regular) refinement of the fan ΣX . On the other hand, Pn is a toric adelic R-divisor
on Xn with polytope equal to Λn and local roof functions equal to those of D restricted
to this polytope, that is

∆Pn = Λn and ϑPn,v
= ϑD,v

∣∣
Λn

for all v ∈ MK . (6.7)

This is explained in [BMPS16, Theorem 7.2] and its proof.

6.2. Inradii and positive intersection numbers. In [Tei82], Teissier first pointed
out the relation between the inradius of toric line bundles and the inradius of the
associated polytopes in the sense of convex geometry. The next statement puts this
observation into the setting of R-divisors.
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Proposition 6.1. Let D and A be toric R-divisors on X such that D is big and A is
big and nef. Then

r(D;A) = r(∆D; ∆A),

where r(∆D; ∆A) denotes the inradius in the sense of Definition A.1.

Proof. Since A is nef, for each λ ∈ R we have that D − λA is pseudo-effective if and
only if there exists x ∈MR such that x+ λ∆A ⊂ ∆D. The equality between the two
inradii follows then directly from their definitions. □

Now let D be a big toric adelic R-divisor on the projective toric variety X. From
the existence and properties of its toric Fujita approximation sequences (6.6) we will
derive both a lower bound for the inradius of D and a formula for its arithmetic
positive intersection numbers.

Proposition 6.2. Let A be a toric R-divisor on X that is big and nef. Then

ρ(D;A) ≥ r(ΓD; ∆A).

Proof. Let (ϕn, Pn) be a toric Fujita approximation sequence of D as in (6.6). With
notation as in Definition 4.15 we have (ϕn, Pn) ∈ Θ(D) for every n. Then

ρ(D;A) ≥ sup
n∈N

r(Pn;ϕ
∗
nA) = sup

n∈N
r(Λn; ∆A) = r(ΓD; ∆A)

by Proposition 6.1 and the fact that the sequence of polytopes (Λn)n approaches ΓD
from inside. □

Proposition 6.3. Let E be a semipositive toric adelic R-divisor on X. Then

vol(R0(D)) = d! vol(ΓD), (⟨Dd⟩ · E) =
∑

v∈MK

nv MIM (ϑD,v|ΓD
, . . . , ϑD,v|ΓD

, ϑE,v).

Proof. Let (ϕn, Pn) be a toric Fujita approximation sequence of D as in (6.6). By
Proposition 3.6 and the formula for toric intersection numbers (6.1) we have

vol(R0(D)) = lim
n→∞

(P d
n) = lim

n→∞
d! volM (Λn) = d! vol(ΓD).

For the second formula, by Definition 3.7 we have (⟨Dd⟩ ·E) = limn→∞(P
d
n ·ϕ∗nE),

whereas by (6.7) and the formula for toric arithmetic intersection numbers (6.5) we get

(P
d
n · ϕ∗nE) =

∑
v∈MK

nv MIM (ϑD,v|∆n , . . . , ϑD,v|∆n
, ϑE,v) for every n ∈ N.

We conclude by taking the limit n→ ∞ and applying Lemma A.9. □

Following [BPS14, Definition 4.3.3], given an arbitrary adelic structure over a toric
R-divisor one can construct a toric one by an averaging process. To describe it, for each
v ∈ MK and u ∈ NR we recall the probability measure ηv,u on Xan

v from [BPRS19,
Definition 5.1], which is defined as:

(1) if v ∈ M∞
K then ηv,u is the translation by any point x ∈ val−1

v (u) ⊂ Tan
v ≃ (C×)d

of the Haar probability measure of the compact torus Sv ≃ (S1)d,

(2) if v ∈ MK \M∞
K then ηv,u is the Dirac measure at the point ζv(u) ∈ val−1

v (u) ⊂ Tan
v

corresponding to the multiplicative seminorm on K[M ] defined as

|f |ζv(u) = max
m∈M

|αm|v e−⟨u,m⟩ for every f =
∑
m∈M

αmχ
m ∈ K[M ].
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Definition 6.4. Let E be an adelic R-divisor on X with E toric. For each v ∈ MK

let ĝv : X
an
v \ Ean

v → R be the function defined as

ĝv(x) =

∫
Xan

v

gE,v dηv,valv(x)

and set Etor = (E, (ĝv)v∈MK
). This is a toric adelic R-divisor on X.

We need the following invariance of arithmetic positive intersection numbers with
respect to this averaging process.

Proposition 6.5. For every E ∈ D̂iv(X)R we have (⟨Dd⟩ · E) = (⟨Dd⟩ · Etor).

Proof. Let P be a toric adelic R-divisor on X. With notations as in Definition 6.4, by
the arithmetic Bézout formula we have

(P
d · E)− (P

d · Etor) =
∑

v∈MK

nv

∫
Xan

v

(gE,v − ĝv) c1(P v)
∧d. (6.8)

Let v ∈ MK . If v is Archimedean then∫
Xan

v

ĝv c1(P v)
∧d =

∫
Xan

v

(∫
Sv
gE,v(t · x) dηv,0(t)

)
c1(P v)

∧d(x)

=

∫
Sv

(∫
Xan

v

gE,v(t · x) c1(P v)
∧d(x)

)
dηv,0(t) =

∫
Xan

v

gE,v c1(P v)
∧d

by Fubini’s theorem and the invariance of the v-adic Monge-Ampère measure of P
under the action of Sv. On the other hand, when v is non-Archimedean we have∫

Xan
v

ĝv c1(P v)
∧d =

∫
Xan

v

gE,v(ζv(valv(x))) c1(P v)
∧d =

∫
Xan

v

gE,v(x) c1(P v)
∧d

by the characterization of the Monge-Ampère measures of semipositive toric adelic
divisors in [BPS14, Theorem 4.8.11]. Combining this with (6.8) we get

(P
d · E) = (P

d · Etor). (6.9)

Now let (ϕn, Pn)n be a Fujita approximation sequence of D as in (6.6). By (6.9)

(P
d
n · ϕ∗nE) = (P

d
n · (ϕ∗nE)tor) = (P

d
n · ϕ∗n(Etor)) for every n ∈ N

because Pn is toric and the averaging process commutes with the toric modification ϕn.
Indeed, this process occurs on the open subset T ⊂ X,Xn, which remains unchanged
under this modification. We conclude by taking the limit as n→ ∞. □

6.3. Equidistribution on toric varieties. Let X be a projective toric variety with
torus T and D a toric adelic R-divisor on X with D big. For each t ≤ µess(D) we set

St(ϑD) = {x ∈ ∆D | ϑD(x) ≥ t}

for the corresponding sup-level set of the global roof function of D. It is a nonempty
compact convex subset of ∆D that is d-dimensional whenever t < µess(D). Set also
∆D,max = Sµess(D)(ϑD).

The global roof function is said to be wide if after fixing an arbitrary norm on MR,
the width of these sup-level sets remains relatively large as the level approaches its
maximum (Definition A.6). By Proposition A.3, this is equivalent to the fact that
the inradius of these sup-level sets with respect to any fixed convex body remains
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relatively large as the level approaches its maximum. By the same result, it is also
equivalent to the fact that for any x0 ∈ ∆D,max we have that 0 ∈ NR is a vertex of
the sup-differential ∂ϑD(x0) ⊂ NR (Definition A.2). When this condition holds, by
Proposition A.8 one can associate to ϑD a unique balanced family of sup-gradients
with respect to its decomposition into local roof functions. This is a family of vectors

uv ∈ NR, v ∈ MK ,

such that uv ∈ ∂ϑD,v(x0) for every v with uv = 0 for all but a finite number of places

and verifying the balancing condition
∑

v∈MK
nvuv = 0. We let

ηD,v = ηv,uv

be the probability measure on Xan
v from Section 6.2 for the point uv ∈ NR.

The following is the main result of this section. It is an application of Theorem 4.8,
or rather of its reformulation in Theorem 4.16 in terms of arithmetic positive intersec-
tion numbers, together with the constructions and results from Sections 6.1 and 6.2
and from Appendix A.

Theorem 6.6. If ϑD is wide then the essential minimum function is differentiable

at D and

∂Eµ
ess(D) =

∑
v∈MK

nv

∫
Xan

v

gE,v dηD,v for every E ∈ D̂iv(X)R with E toric.

In particular, in this case D satisfies the equidistribution property at every v ∈ MK

with νD,v = ηD,v.

Proof. Let (uv)v be the balanced family of sup-gradients of ϑD, so that ηD,v = ηv,uv

for every v. Set µ = µess(D) for short. Then

lim
t→µ

µ− t

r(St(ϑD);∆D)
= 0. (6.10)

For each t < µ the global roof functions of D and its shift by t are related by ϑD =
ϑD(t) + t, and so St(ϑD) = ΓD(t) for the convex body defined in (6.3). Combining

this with Lemma 1.2 and Proposition 6.2 we deduce r(St(ϑD);∆D) ≤ c ρ(D(t)) for a
constant c > 0 not depending on t. Hence

lim
t→µ

µ− t

ρ(D(t))
= 0

and so by Theorem 4.16 the essential minimum function is differentiable at D with

∂Eµ
ess(D) = lim

t→µ

(⟨D(t)d⟩ · E)

vol(Rt(D))
for every E ∈ D̂iv(X)R. (6.11)

For the formula for the derivative, we first consider the case when E is toric and
semipositive.

Let S ⊂ MK be a finite set of places such that uv = 0, ψE,v = ΨE and ϑE,v = 0|∆E

for all v ∈ MK \S. Let t < µ and set for short St = St(ϑD). For each v ∈ MK let
θv,t : St → R be the restriction of the concave function ϑD,v − εvt to this convex body,
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with εv = 1 if v is Archimedean and εv = 0 otherwise. Then by Proposition 6.3 we
have

vol(Rt(D)) = d! volM (St) and (⟨D(t)d⟩ · E) =
∑
v∈S

nv MIM (θv,t, . . . , θv,t, ϑE,v).

(6.12)
Choose x0 ∈ ∆D,max and set cv = ϑD,v(x0) − ⟨uv, x0⟩, v ∈ S. By (6.4) and the

balancing condition of (uv)v we have∑
v∈S

nv cv =
∑

v∈MK

nv (ϑD,v(x0)− ⟨uv, x0⟩) = ϑD(x0) = µ.

For each v ∈ S we have ϑD,v(x) ≤ ⟨uv, x−x0⟩+ϑD,v(x0) = ⟨uv, x⟩+cv for all x ∈ ∆D

because uv ∈ ∂ϑD,v(x0). Setting κv = maxx∈St(⟨uv, x⟩+ cv − ϑD,v(x)) ≥ 0 we have

⟨uv, x⟩+ cv − κv − εvt ≤ θv,t(x) ≤ ⟨uv, x⟩+ cv − εvt for every x ∈ St. (6.13)

From the upper bound in (6.13) and the monotonicity of the mixed integral we get

MIM (θv,t, . . . , θv,t, ϑE,v) ≤ MIM ((⟨uv, x⟩+cv−εv t)|St , . . . , (⟨uv, x⟩+cv−εv t)|St , ϑE,v).

By Lemma A.10 and Remark A.11, the right-hand side of this inequality can be
computed as

−d! vol(St)ψE,v(uv) + d (cv − εvt)MVM (St, . . . , St,∆E) + ⟨uv, x1⟩

for a point x1 ∈ MR not depending on v, because ψE,v coincides with the Legendre-

Fenchel dual of ϑE,v as defined in (A.7). Summing over all these places, we deduce

from (6.12) and the balancing condition of (uv)v

(⟨D(t)d⟩ · E)

vol(Rt(D))
≤ −

∑
v∈S

nvψE,v(uv) + d (µ− t)
MVM (St, . . . , St,∆E)

d! volM (St)
. (6.14)

For the converse inequality, for each v ∈ S and any x ∈ St we have

µ− t ≥ µ− ϑD(x) =
∑
w∈S

nw(cw + ⟨uw, x⟩ − ϑD,w(x)) ≥ nv(cv + ⟨uv, x⟩ − ϑD,v(x))

using again the balancing condition of (uv)v together with the previous upper bound
for the w-adic roof functions for w ̸= v. Since this holds for every x ∈ St we deduce
nvκv ≤ µ− t, and in particular∑

v∈S
nvκv ≤ #S (µ− t).

Combining this with the lower bound in (6.13) we similarly obtain

(⟨D(t)d⟩ · E)

vol(Rt(D))
≥ −

∑
v∈S

nvψE,v(uv)− (#S− 1) d (µ− t)
MVM (St, . . . , St,∆E)

d! volM (St)
. (6.15)

Now choose c > 0 such that x + c∆E ⊂ ∆D for some x ∈ MR. Then there exists
x′ ∈MR such that x′ + c r(St(ϑD);∆D)∆E ⊂ St, and so by the monotonicity and the
multilinearity of the mixed volume function we have

c r(St(ϑD);∆D) MVM (St, . . . , St,∆E) ≤ MVM (St, . . . , St, St) = d! volM (St).
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Hence with the limit (6.10) we deduce that the error terms in (6.14) and (6.15) vanish
as t→ µ. It then follows from the expression (6.11)

∂Eµ
ess(D) = −

∑
v∈S

nvψE,v(uv) = −
∑

v∈MK

nvψE,v(uv). (6.16)

By the additivity of the derivative and the metric functions, this formula readily
extends to the DSP case, and by density to any toric adelic R-divisor on X.

For an arbitrary adelic R-divisor E on X with E toric we apply the averaging pro-
cess in Definition 6.4. By the invariance of the arithmetic positive intersection numbers
with respect to this process (Proposition 6.5) we deduce from (6.11) and (6.16)

∂Eµ
ess(D) = ∂Etorµ

ess(D) =
∑

v∈MK

nv ĝv(xv) =
∑

v∈MK

nv

∫
Xan

v

gE,v dηv,uv

with ĝv as in Definition 6.4 and any xv ∈ val−1
v (uv) ⊂ Xan

v , using the relation between
Green functions and metric functions in (6.2). This completes the proof of the first
statement. The second follows readily from this and Proposition 4.6. □

Now we assume that ϑD is wide. For every f ∈ K[M ]\{0} we introduce the quantity

mD(f) =
∑

v∈MK

nv

∫
Xan

v

log |f |v dηD,v ∈ R.

Recall that for each v we have that ηD,v = ηv,uv for the component uv ∈ NR of the
balanced family of sup-gradients of ϑD. Taking into account the definition of these
probability measures and writing f =

∑
m∈M αmχ

m we have

mD(f) =
∑

v∈M∞
K

nv

∫
Sv

log |f(t·xv)|v dηv,0(t)+
∑

v∈MK\M∞
K

nv logmax
m

(e−⟨uv ,m⟩|αm|v), (6.17)

where for v Archimedean we denote by xv any point in the fiber val−1
v (uv) ⊂ Tan

v ,
and ηv,0 is the Haar probability measure of Sv. Hence this quantity is an extension
of the classical logarithmic Gauss-Mahler measure of a Laurent polynomial, which in
our setting corresponds to the case where uv = 0 for every v.

Lemma 6.7. The following properties hold:

(1) for every m ∈M and α ∈ K× we have mD(αχ
m) = 0,

(2) for every f ∈ K[M ] \ {0} we have mD(f) ≥ 0,

(3) for every m ∈M \ {0} and γ ∈ K× we have

mD(χ
m − γ) =

∑
v∈MK

nv max(0, ⟨uv,m⟩+ log |γ|v).

Proof. For (1), for each v ∈ MK we have
∫
Xan

v
log |αχm|v dηv,uv = log |α|v − ⟨uv,m⟩

from the explicit expression of this local term in (6.17). Hence

mD(αχ
m) =

∑
v∈MK

nv(log |α|v − ⟨uv,m⟩) = 0

by the product formula and the fact that (uv)v is balanced.
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For (2), choose a vertex m ∈ M of the Newton polytope of f . For each v ∈ MK

we have ∫
Xan

v

log |f |v dηD,v ≥ log |αm|v − ⟨uv,m⟩.

This follows again from the expression of this term in (6.17), using in the Archimedean
case the fact that the Mahler measure of a Laurent polynomial is bounded below by
the absolute value of any of its vertex coefficients. Together with (1) this implies

mD(f) ≥
∑

v∈MK

nv (log |αm|v − ⟨uv,m⟩) = mD(αmχ
m) = 0.

For (3), for each v we have∫
Xan

v

log |χm−γ|v dηD,v = logmax(e−⟨uv ,m⟩, |γ|v) = −⟨uv,m⟩+max(0, ⟨uv,m⟩+log |γ|v)

using again the explicit expression (6.17) together with Jensen’s formula for the Mahler
measure in the Archimedean case. The statement follows by considering the weighted
sum of these terms and the fact that the family (uv)v is balanced. □

For an arbitrary E ∈ D̂iv(X)R one can compute the corresponding derivative of the
essential minimum function by reducing to the situation considered in Theorem 6.6.
Since the K-algebra OX(T) = K[M ] is factorial, for any E ∈ Div(X)R we can choose

fE ∈ Rat(X)×R

defining the restriction of E to the torus. By Lemma 6.7(1), the quantity mD(fE)
does not depend on the choice of this equation.

Corollary 6.8. With notations and assumptions as in Theorem 6.6,

∂Eµ
ess(D) = mD(fE) +

∑
v∈MK

nv

∫
Xan

v

gE,v dηD,v for every E ∈ D̂iv(X)R.

Proof. We have that E − d̂iv(fE) is an adelic toric R-divisor on X whose geometric
R-divisor E−div(fE) is toric. Hence by the invariance of the essential minimum with
respect to linear equivalence and Theorem 6.6 we obtain

∂Eµ
ess(D) = ∂

E−d̂iv(fE)
µess(D) =

∑
v∈MK

nv

∫
Xan

v

g
E−d̂iv(fE),v

dηD,v

=
∑

v∈MK

nv

∫
Xan

v

log |fE |v dηD,v +
∑

v∈MK

nv

∫
Xan

v

gE,v dηD,v,

which gives the statement. □

We also have the following converse of Theorem 6.6 in the semipositive situation.

Theorem 6.9. If D is semipositive then the following conditions are equivalent:

(1) ϑD is wide,

(2) the essential minimum function is differentiable at D,

(3) D satisfies the equidistribution property at every place v.

To prove it, we need the next result showing that in the semipositive toric setting
it is always possible to find a sharp upper bound as that required by Proposition 5.17.
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Proposition 6.10. If D is semipositive then there exists a semipositive toric adelic

R-divisor D′
over D with D

′ −D pseudo-effective and µess(D
′
) = µabs(D

′
) = µess(D).

Proof. Choose a point x0 ∈ ∆D,max and let (uv)v be a balanced family of sup-gradients
for ϑD, which always exists thanks to Proposition A.8. For each v ∈ MK we have

ϑD,v(x) ≤ ⟨uv, x⟩+ cv for every x ∈ ∆D (6.18)

with cv = ϑD,v(x0)− ⟨uv, x0⟩.
Using the correspondence in [BPS14, Proposition 4.9.2(2)], set D

′
for the semiposi-

tive toric adelic R-divisor over D with local roof functions equal to the affine functions
in the right-hand side of (6.18). Since the family (uv)v is balanced we have

ϑ
D

′(x) =
∑

v∈MK

nvϑD′
,v
(x) =

∑
v∈MK

nv(⟨uv, x⟩+ cv) = c for every x ∈ ∆D,

for the constant c =
∑

v∈MK
nvcv ∈ R. This implies µess(D

′
) = µabs(D

′
) = c. Since

D is semipositive, the inequality (6.18) implies that D
′ −D is pseudo-effective. Fur-

thermore, by (6.4) and the balancing condition for (uv)v we have

c =
∑

v∈MK

nv(ϑD,v(x0)− ⟨uv, x0⟩) = ϑD(x0) = µess(D)

and so µess(D
′
) = µabs(D

′
) = µess(D), as stated. □

Proof of Theorem 6.9. It is a direct consequence of Theorem 6.6 together with Propo-
sitions 5.17 and 6.10. □

Remark 6.11. The toric equidistribution theorem from [BPRS19] states that in the
semipositive case, the toric adelic R-divisor D verifies the equidistribution property
at every place of K if and only if it is monocritical, in the sense that an associate
functional on a space of adelic measures has a unique global minimum. By Proposi-
tion 4.15 in loc.cit., this condition can be reformulated in simpler terms as the fact
that 0 is not a vertex of ∂ϑD(x0) for any x0 ∈ ∆D,max. Proposition A.3 shows that it
is also equivalent to the fact that the global roof function is wide, and so Theorem 6.9
recovers this toric equidistribution theorem.

On the other hand, Theorem 6.6 extends the sufficient condition in this theorem to
the situation where D is not necessarily semipositive and strengthens its conclusion
to include the differentiability of the essential minimum function.

Combining the previous results with those from Section 5.4 we reinforce the toric
equidistribution property of D to include test functions with logarithmic singularities
along effective divisors satisfying a numerical condition.

Theorem 6.12. Assume that ϑD is wide and let E be an effective divisor on X

such that mD(fE) = 0. Then for every D-small generic sequence (xℓ)ℓ in X(K) and
v ∈ MK we have

lim
ℓ→∞

∫
Xan

v

φdδO(xℓ)v =

∫
Xan

v

φdηD,v

for any function φ : Xan
v → R∪{±∞} with at most logarithmic singularities along E.

In particular, this holds if each irreducible component of the Weil divisor [E] is
either contained in X \ T or is the closure of the zero set of an irreducible binomial
χm − γ with m ∈M \ {0} and γ ∈ K× such that log |γ|v = −⟨uv,m⟩ for every v.
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Proof. Since ϑD is wide we have that D satisfies the condition in Theorem 4.16 and
a fortiori that in Theorem 4.8. The first statement is then a direct application of
Corollary 6.8 and Theorem 5.13.

For the second, in the current situation we can choose fE =
∏

i∈I f
ki
i with ki ∈ N

and fi = χmi − γi for some mi ∈M \ {0} and γi ∈ K× such that log |γi|v = −⟨uv,mi⟩
for every i ∈ I and v ∈ MK . By Lemma 6.7(3) we have

mD(f) =
∑
i∈I

kimD(fi) = 0,

so this statement follows from the first. □

It is natural to try to interpret in terms of heights the numerical condition imposed
on the effective divisor E by the previous theorem. To this end, first note that for
every point x ∈ T(K) we have hD(x) ≥ µess(D) [BPS15, Lemma 3.8(1)], and so for
every subvariety V ⊂ X that is not contained in the boundary X \ T we have

µess(D|V ) ≥ µess(D).

Following [BPRS19, Definition 5.10], we say that V is D-special if this lower bound is
an equality.

Using the characterization of the Bogomolov property for monocritical semipositive
toric adelic R-divisors in [BPRS19, Section 5] we derive the following logarithmic
equidistribution theorem for the semipositive case.

Corollary 6.13. Assume that D is semipositive and that ϑD is wide. Let E be an
effective divisor on X such that each of the irreducible components of [E] is either
contained in X \ T or is the closure of a D-special hypersurface of T. Then for every
D-small generic sequence (xℓ)ℓ in X(K) and v ∈ MK we have

lim
ℓ→∞

∫
Xan

v

φdδO(xℓ)v =

∫
Xan

v

φdηD,v

for any function φ : Xan
v → R∪{±∞} with at most logarithmic singularities along E.

Proof. Since D is semipositive and ϑD is wide we have that D is monocritical in
the sense of [BPRS19], see Remark 6.11. Let V be an irreducible component of [E]
that is D-special. After extending K is necessary we assume that V is geometrically
irreducible. By the Bogomolov property for monocritical adelic R-divisors [BPRS19,
Theorem 5.12], V0 = V ∩ T is the translate of a subtorus. Since V0 is a hypersurface,
there exist m ∈M and x0 ∈ T(K) such that

V0 = Z(χm − 1) · x0.

Note that V0 = Z(χm − γ) for γ = χm(x0). By [BPRS19, Proposition 5.14(1)], the
fact that V is D-special implies that

uv ∈ m⊥
R + valv(x0) for every v ∈ MK ,

which is equivalent to the fact that ⟨uv,m⟩ = ⟨valv(x0),m⟩ = − log |γ|v for every v.
We conclude with Theorem 6.12. □



56 BALLAŸ AND SOMBRA

7. Dynamical systems and semiabelian varieties

In this section we study adelic R-divisors that are sums of several canonical adelic R-
divisors with different regimes with respect to an algebraic dynamical system. In this
setting Zhang’s lower bound for the essential minimum might be strict, in which case
Yuan’s equidistribution theorem cannot be applied. We show that in spite of this, the
essential minimum function is differentiable at these adelic R-divisors, and for every
place the Galois orbits of small generic sequences of algebraic points converge towards
the equilibrium measure (Theorem 7.4). We also show that this convergence still
holds with respect to test functions with logarithmic singularities along hypersurfaces
containing a dense subset of preperiodic points (Theorem 7.9).

These results apply in the setting of semiabelian varieties, giving the differentia-
bility of the essential minimum function and recovering Kühne’s semiabelian equidis-
tribution theorem (Theorem 7.10). They also imply that this equidistribution also
holds with respect to functions with logarithmic singularities along torsion hypersur-
faces (Theorem 7.14).

7.1. Canonical adelic R-divisors. Canonical metrized line bundles for algebraic
dynamical systems were introduced by Zhang [Zha95b] and extended to adelic R-
divisors by Chen and Moriwaki [CM15]. Here we recall this notion and study some of
its positivity properties.

Let X be a normal projective variety over K and ϕ : X → X a surjective endo-
morphism. Then ϕ is finite [Fak03, Lemma 5.6] and we denote by deg(ϕ) its degree.
Let D be an R-divisor on X such that ϕ∗D ≡ qD for a real number q > 1.

Definition 7.1. The canonical adelic R-divisor of D, denoted by Dcan, is any adelic
R-divisor on X such that

ϕ∗Dcan ≡ qDcan on D̂iv(X)R. (7.1)

To construct it, choose f ∈ Rat(X)×R such that ϕ∗D = qD + div(f). Starting from
any adelic R-divisor over D and applying Tate’s limit argument, it can be shown that

there exists a unique D ∈ D̂iv(X)R such that [CM15, Section 4]

ϕ∗D = qD + d̂iv(f). (7.2)

In particular D is canonical in the sense of Definition 7.1. Now if D
′ ∈ D̂iv(X)R

is another canonical adelic R-divisor over D then ϕ∗D
′
= qD

′
+ d̂iv(f ′) with f ′ ∈

Rat(X)×R . Necessarily f = γf ′ with γ ∈ K×
R , and from the uniqueness of (7.2) we get

D
′
= D − d̂iv(λ) with λ = γ1/(q−1). Hence the canonical adelic R-divisor of D exists

and is unique up to a summand of the form d̂iv(λ) with λ ∈ K×
R .

The associated height function is not affected by this indeterminacy thanks to the
product formula, and by (7.1) it verifies

hDcan(ϕ(x)) = q hDcan(x) for every x ∈ X(K). (7.3)

A point x ∈ X(K) is preperiodic if its orbit with respect to ϕ is finite or equivalently,
if there are positive integers j < k such that ϕ◦j(x) = ϕ◦k(x). The functoriality (7.3)
implies that hDcan(x) = 0 whenever x is preperiodic.

It is well-known that if D is ample then Dcan is nef and both the absolute and
the essential minima vanish. Here we give a weaker condition ensuring the pseudo-
effectivity of the canonical adelic R-divisor and the vanishing of its essential minimum.
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Proposition 7.2. If R(D) ̸= {0} then Dcan is pseudo-effective and µess(Dcan) = 0.

Proof. First note that the essential minimum is finite because R(D) ̸= {0}. We have

µess(Dcan) = µess(ϕ∗Dcan) = µess(qDcan) = q µess(Dcan)

since ϕ is dominant and finite, and ϕ∗Dcan ≡ qDcan. Hence µess(Dcan) = 0, as stated.
The pseudo-effectivity of Dcan then follows from Theorem 2.17 and the fact that

this condition is closed. Nevertheless we give a self-contained proof of this statement.
Let s = (f, eD) be a nonzero global section of eD for an integer e ≥ 1, which

exists because R(D) ̸= {0}. Up to multiplying s by a nonzero scalar we can suppose
that ∥s∥D,v,sup ≤ 1 for every non-Archimedean v. Then given ε > 0 we take k ≥ 1

such that log ∥s∥D,v,sup ≤ ε e qk for every Archimedean v. The pullback ϕ◦k,∗s =

(ϕ◦k,∗f, e ϕ◦k,∗D) is a nonzero global section of e ϕ◦k,∗D and since ϕ is surjective, it
has the same v-adic sup-norms as s. Since ϕ∗Dcan ≡ q Dcan there is a nonzero global
section sk of e qkD with the same v-adic sup-norms. Hence

log ∥sk∥eqkDcan,v,sup = log ∥s∥Dcan,v,sup ≤

{
ε e qk if v ∈ M∞

K ,

0 if v ∈ MK \M∞
K ,

and so sk ∈ R−ε(Dcan). Therefore R−ε(Dcan) ̸= {0} for every ε > 0 and so Dcan is
pseudo-effective. □

7.2. Equidistribution for sums of canonical adelic R-divisors. Let ϕ be a sur-
jective endomorphism of a normal projective variety X over K of dimension d ≥ 1.
For i = 1, . . . , s let Di ∈ Div(X)R with ϕ∗Di ≡ qiDi for a real number qi > 1 and set

D =

s∑
i=1

D
can
i .

Up to reordering we assume that 1 < q1 ≤ q2 ≤ · · · ≤ qs. We also assume that

(1) R(Di) ̸= {0} for every i,

(2) D is big and semiample.

When D is ample and Di is nef for every i we have that ϕ∗D −D is ample, which
by Fakhruddin’s theorem [Fak03, Theorem 5.1] ensures that the set of periodic points
of ϕ is dense. Together with Proposition 7.2 this easily implies that the essential
minimum of D vanishes. The next result shows that this property also holds in our
more general setting.

Proposition 7.3. We have µess(D) = 0.

Proof. By Proposition 7.2, the fact that R(Di) ̸= {0} implies that µess(D
can
i ) = 0 for

every i. Hence by Lemma 2.16(1) we have µess(D) ≥
∑s

i=1 µ
ess(D

can
i ) = 0. On the

other hand,

ϕ∗D ≡
s∑

i=1

qiD
can
i = q1D +

s∑
i=2

(qi − q1)D
can
i .

Since qi ≥ q1 and µess(D
can
i ) = 0 for every i, applying again Lemma 2.16(1) and the

fact that ϕ is a finite morphism we obtain µess(D) = µess(ϕ∗D) ≥ q1µ
ess(D). Hence

µess(D) ≤ 0, which gives the statement. □
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Since ϕ is finite, for every v ∈ MK and any measure ν on Xan
v we can consider the

pullback ϕan,∗v ν by the v-adic analytification of ϕ, as explained in [Cha06, Section 2.8].

For any A1, . . . , Ad ∈ D̂SP(X)R we have

ϕan,∗v (c1(A1,v) ∧ · · · ∧ c1(Ad,v)) = c1(ϕ
∗A1,v) ∧ · · · ∧ c1(ϕ∗Ad,v). (7.4)

The following is the central result of this section. To state it, we denote by Ns
d ⊂ Ns

the set of s-tuples of nonnegative integers whose components sum up to d. For each
a ∈ Ns

d we set qa =
∏s

i=1 q
ai
i and consider the subset

I = {a ∈ Ns
d | qa = deg(ϕ)}.

Note that there is always a semipositive adelic R-divisor D′
over D by semiampleness.

Theorem 7.4. Let v ∈ MK .

(1) The essential minimum function is differentiable at D, and for any semipositive

adelic R-divisor D′
over D we have

∂E µ
ess(D) =

1

(Dd)
lim
n→∞

((ϕ◦n,∗D
′
)d · E)

deg(ϕ)n
for every E ∈ D̂iv(X)R.

In particular, D has the equidistribution property at v with

νD,v =
1

(Dd)
lim
n→∞

ϕ◦n,an,∗v c1(D
′
v)

∧d

deg(ϕ)n
.

(2) If each Dcan
i is DSP and D is semipositive then

∂E µ
ess(D) =

∑
a∈I
(
d
a

)
(E ·

∏s
i=1(D

can
i )ai)∑

a∈I
(
d
a

)
(
∏s

i=1D
ai
i )

for every E ∈ D̂iv(X)R.

(3) If each gDcan
i ,v is semipositive then νD,v = c1(Dv)

∧d/(Dd).

The next lemma gives the specific sequence of semipositive approximations that
will allow us to deduce this result from Theorem 4.8.

Lemma 7.5. Let D
′
be a semipositive adelic R-divisor over D such that D − D

′
is

pseudo-effective, and for every n ∈ N set Qn = q−n
s ϕ◦n,∗D

′ ∈ D̂iv(X)R. Then

(1) Qn is a semipositive approximation of D,

(2) r(Qn;D) ≥ q−n
s qn1 ,

(3) (Qd
n) = q−dn

s deg(ϕ)n(Dd),

(4) µabs(Qn) = q−n
s µabs(D

′
).

Proof. We have that Qn is semipositive and Qn is big because these properties are

preserved under pullback with respect to a finite morphism. Set Fn = ϕ◦n,∗(D−D
′
),

which is pseudo-effective since so is D −D
′
. We have

D −Qn = D − 1

qns
ϕ◦n,∗D

′
= D − 1

qns
ϕ◦n,∗D +

1

qns
Fn ≡

s∑
i=1

(
1− qni

qns

)
D

can
i +

1

qns
Fn.

Hence D−Qn is pseudo-effective, because qs ≥ qi and by Proposition 7.2 we have that
D

can
i is pseudo-effective for every i. Thus Qn is a semipositive approximation of D,



APPROXIMATION OF ADELIC DIVISORS AND EQUIDISTRIBUTION 59

proving (1). Moreover

Qn − qn1
qns
D ≡

s∑
i=1

qni − qn1
qns

Di

is pseudo-effective and therefore r(Qn;D) ≥ q−n
s qn1 , as stated in (2). Finally the

formulae (3) and (4) are respectively given by the projection formula [Ful98, Chap-
ter 2, Proposition 2.3(c)] and the invariance of the absolute minimum with respect to
pullback by a surjective morphism. □

We also need the next auxiliary result.

Lemma 7.6. Let I = {a ∈ Ns
d | qa = deg(ϕ)} as before.

(1) We have (Dd) =
∑
a∈I

(
d

a

)( s∏
i=1

Dai
i

)
.

(2) Let v ∈ MK and assume that gDcan
i ,v is semipositive for every i. Then

c1(Dv)
∧d =

∑
a∈I

(
d

a

) s∧
i=1

c1(D
can
i,v )∧ai and ϕan,∗v c1(Dv)

∧d = deg(ϕ) c1(Dv)
∧d.

Proof. For each a ∈ Ns
d we have

qa
( s∏

i=1

Dai
i

)
=
( s∏

i=1

(ϕ∗Di)
ai
)
= deg(ϕ)

( s∏
i=1

Dai
i

)
by the projection formula. Therefore this quantity vanishes unless a ∈ I, and (1)
follows by the multilinearity of the intersection product.

Now assume that gDcan
i ,v is semipositive for every i. The multilinearity of the

Monge-Ampère operator gives

c1(Dv)
∧d =

∑
a∈Ns

d

(
d

a

) s∧
i=1

c1(D
can
i,v )∧ai .

By semipositivity,
∧s

i=1 c1(D
can
i,v )∧ai is a measure for each a ∈ Ns

d. Since its total mass

is (
∏s

i=1D
ai
i ), this measure is zero unless a ∈ I. This gives the first formula in (2).

Hence

ϕan,∗v c1(Dv)
∧d =

∑
a∈I

(
d

a

) s∧
i=1

c1(ϕ
∗Dcan

i,v )∧ai

=
∑
a∈I

(
d

a

)
qa

s∧
i=1

c1(D
can
i,v )∧ai = deg(ϕ) c1(Dv)

∧d

by the functoriality (7.4), thus giving the second formula. □

Proof of Theorem 7.4. For (1) we consider first the case where D − D
′
is pseudo-

effective. Then for each n ∈ N we let Qn = q−n
s ϕ◦n,∗(D

′
) be the semipositive approx-

imation of D given by Lemma 7.5. By Lemma 2.16(4) and Proposition 7.3 we have
µabs(Qn) ≤ µess(Qn) ≤ µess(D) = 0, and so by Lemma 7.5

0 ≤ µess(D)− µabs(Qn)

r(Qn;D)
=

−µabs(Qn)

r(Qn;D)
≤ −q−n

s µabs(D
′
)

q−n
s qn1

=
−µabs(D′

)

qn1
.
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We also have µabs(D
′
) > −∞ because D is semiample. We deduce that this quo-

tient vanishes as n → ∞, and so by Theorem 4.8 the essential minimum function is

differentiable at D and for every E ∈ D̂iv(X)R we have

∂E µ
ess(D) = lim

n→∞

(Q
d
n · E)

(Qd
n)

= lim
n→∞

q−nd
s ((ϕ◦n,∗D

′
)d · E)

q−nd
s deg(ϕ)n(Dd)

=
1

(Dd)
lim
n→∞

((ϕ◦n,∗D
′
)d · E)

deg(ϕ)n
.

This proves the first part of the statement in this case.

Now let D
′
be any semipositive adelic R-divisor over D. Take then λ ∈ K×

such that ∥λ∥
D−D

′
,v,sup

≤ 1 for every non-Archimedean place v. It follows that λ ∈
Γ̂(X,D − D

′
+ t[∞]) for any sufficiently large t ∈ R, and so D − (D

′ − t [∞]) is
pseudo-effective. By the previous case we have

∂E µ
ess(D) =

1

(Dd)
lim
n→∞

((ϕ◦n,∗D
′ − t [∞])d · E)

deg(ϕ)n

=
1

(Dd)
lim
n→∞

(
((ϕ◦n,∗D

′
)d · E)

deg(ϕ)n
− d t

((ϕ◦n,∗D)d−1 · E)

deg(ϕ)n

)
using the formula (2.4). Since the left-hand side is independent of t, it follows that

lim
n→∞

((ϕ◦n,∗D)d−1 · E)

deg(ϕ)n
= 0,

completing the proof of this first part. The second part is a direct consequence of this
one using Proposition 4.6.

For (2) let E ∈ D̂iv(X)R. Since D is semipositive we can apply (1) with D
′
= D.

Since ϕ◦n,∗D ≡
∑s

i=1 q
n
i D

can
i we obtain

∂E µ
ess(D) =

1

(Dd)
lim
n→∞

∑
a∈Ns

d

(
d

a

)( qa

deg(ϕ)

)n (
E ·

s∏
i=1

(Dcan
i )ai

)
by the multilinearity of the arithmetic intersection product. The formula follows then
from the existence of this limit together with Lemma 7.6(1).

For (3) note first that gD,v is semipositive, being a sum of semipositive v-adic Green

functions. Take a semipositive adelic R-divisor D′
be over D with g

D
′
,v
= gD,v, so that

c1(D
′
v)

∧d = c1(Dv)
∧d. By Lemma 7.6(2) we have ϕ◦n,an,∗v c1(Dv)

∧d = deg(ϕ)nc1(Dv)
∧d

for every n ∈ N, and so the statement follows from (1). □

This result allows to introduce a natural notion of equilibrium measure in our
present setting.

Definition 7.7. Let v ∈ MK , choose a semipositive adelic R-divisor D′
over D and

set µv = c1(D
′
v)

∧d/(Dd). The v-adic equilibrium measure of ϕ with respect to D is
the probability measure on Xan

v defined as

µϕ,D,v = lim
n→∞

ϕ◦n,an,∗v µv
deg(ϕ)n

.

Theorem 7.4 ensures that this limit exists and coincides with the v-adic equidis-

tribution measure νD,v. In particular it does not depend on the choice of D
′
. By
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construction, the v-adic equilibrium measure is fully invariant in the sense that

ϕan,∗v µϕ,D,v = deg(ϕ)µϕ,D,v.

Remark 7.8. When D is ample and Di is nef for every i , the preperiodic points of
ϕ form a dense subset of X(K) of points of height zero with respect to D. Hence in
this case the v-adic equilibrium measure does not depend on D.

We also have the following logarithmic equidistribution result. Recall that a sub-
variety Y ⊂ X is preperiodic if there are two positive integers j < k such that
ϕ◦j(Y ) = ϕ◦k(Y ).

Theorem 7.9. Assume that Dcan
i is semipositive for every i. Let (xℓ)ℓ be a D-small

generic sequence in X(K) and E an effective divisor on X such that every irreducible
component of its Weil divisor [E] contains a dense subset of preperiodic points. Then
for every v ∈ MK we have

lim
ℓ→∞

∫
Xan

v

φdδO(xℓ)v =

∫
Xan

v

φ
c1(Dv)

∧d

(Dd)

for any function φ : Xan
v → R ∪ {±∞} with at most logarithmic singularities along E.

In particular, this holds when D is ample and every irreducible component of [E] is
preperiodic.

Proof. Note that Dcan is semipositive, being a sum of semipositive adelic R-divisors.
For every n ∈ N let Qn = q−n

s ϕ◦n,∗D be the semipositive approximation of D from
Lemma 7.5. By this result and Lemma 7.6(2) we have

lim
n→∞

µabs(Qn)

r(Qn;D)
= 0 and

c1(Qn,v)
∧d

(Qd
n)

=
c1(Dv)

∧d

(Dd)
for every v ∈ MK . (7.5)

Let Y be an irreducible component of [E]. Up to switching to linearly equivalent
divisors, we can suppose that Y is not contained in the support of any of the Di’s,
and so we can consider the restriction of Qn to Y . Then

hQn
(Y ) ≤ dµess(Qn|Y ) (Qd−1

n · Y ) ≤ 0.

by Zhang’s inequality (Theorem 2.18) and the fact that the set of preperiodic points
of Y (K) is dense. On the other hand, let A be an ample divisor on X such that A−Y
is pseudo-effective. Since Qn is nef we have (Qd−1

n · Y ) ≤ (Qd−1
n ·A) ≤ (Qd

n)/r(Qn;A)
by the inequality (1.1) and Lemma 1.3. Using this and Lemma 2.15 we obtain

0 ≤
hQn

(Y )− dµabs(Qn) (Q
d−1
n · Y )

(Qd
n)

≤ −dµabs(Qn) (Q
d−1
n · Y )

(Qd
n)

≤ −dµabs(Qn)

r(Qn;A)
.

These inequalities with the limit in (7.5) imply that this quantity vanishes as n→ ∞.
Since this holds for every Y , the condition of Corollary 5.15 is verified and so this
result gives the first statement.

Finally, assume that D is ample and let Y be a preperiodic irreducible component
of [E]. Then there is an integer j > 0 such that Y ′ := ϕ◦j(Y ) is periodic with period
k0 > 0, and so the iteration ϕ◦k0 induces a dynamical system on Y ′. Up to linear
equivalence we can restrict D to Y ′ and we have

ϕ◦k0,∗D|Y ′ −D|Y ′ ≡
s∑

i=1

(qk0i − 1)Di|Y ′ = (qk01 − 1)D|Y ′ +
s∑

i=1

(qk0i − qk01 )Di|Y ′ .
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The semipositivity assumption implies that Di is nef for every i. Then ϕ◦k0,∗D|Y ′ −
D|Y ′ is ample, being the sum of an ample R-divisor and a nef one. By Fakhruddin’s
theorem [Fak03, Theorem 5.1] the set of periodic points of Y ′(K) is dense, and so
Y (K) contains a dense subset of preperiodic points. □

7.3. Equidistribution on semiabelian varieties. Here we specialize the results of
the previous section in the semiabelian setting. We first recall the basic constructions
and properties that are needed to this end, referring to [Cha00, Küh22] for the proofs
and more details.

Let G be a semiabelian variety over K that is the extension of an abelian variety A
of dimension g by a split torus Gr

m. Hence there is an exact sequence of commutative
algebraic groups over K

0 −→ Gr
m −→ G −→ A −→ 0.

We consider the compactification G of G induced by toric compactification (P1)r
of Gr

m. To construct it, one endows the product variety G× (P1)r with the action of
this split torus defined at the level of points as

t · (x, y) = (t ·G x, t−1 ·(P1)r y)

and defines G as the categorical quotient G× (P1)r/Gr
m. It is a smooth variety over K

containing G as a dense open subset, and the projection G→ A extends to a morphism
π : G→ A allowing to consider this compactification as a (P1)r-bundle over A.

For a given integer ℓ > 1 the multiplication-by-ℓ on G extends to a morphism
[ℓ]G : G → G of degree ℓr+2g. If we denote by [ℓ]A the multiplication-by-ℓ on A, then
there is a commutative diagram

G
[ℓ]G //

π
��

G

π
��

A
[ℓ]A // A

(7.6)

The boundary G\G is an effective Weil divisor, and we denote byM its associated
(Cartier) divisor on G. It is relatively ample with respect to π and verifies

[ℓ]∗
G
M = ℓM on Div(G).

Let N be an ample symmetric divisor on A, which therefore verifies that [ℓ]∗AN ≡ ℓ2N
on Div(A). Then its pullback π∗N is semiample, and by (7.6) it verifies

[ℓ]∗
G
π∗N ≡ ℓ2π∗N on Div(G).

Furthermore, the sum D =M + π∗N is an ample divisor on G.

LetM can ∈ D̂iv(G) and N can ∈ D̂iv(A) be the canonical adelic divisors ofM and N
for the surjective endomorphisms [ℓ]G and [ℓ]A, respectively. By [Cha00, Proposi-

tion 3.4] the adelic divisor M can does not depend of the choice of ℓ, and the same
holds for N can. By the commutativity in (7.6) we have

[ℓ]∗
G
M can = ℓM can and [ℓ]∗

G
π∗N can ≡ ℓ2π∗N can on D̂iv(G). (7.7)

In particular, π∗N can is the canonical adelic divisor of π∗N for [ℓ]G.

We have that M can is semipositive, as shown by Chambert-Loir in [Cha00, Propo-
sition 3.6] relying on some specific regular models of abelian varieties constructed by
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Künnemann. The adelic divisor N can on A is semipositive because N is ample, and
so this is also the case for π∗N can.

Finally set D =M can + π∗N can ∈ D̂iv(G). By (7.7), its height function verifies

hD([ℓ]Gx) = ℓ hMcan(x) + ℓ2 hNcan(π(x)) for x ∈ G(K).

It is nonnegative on G(K) and vanishes on the torsion points, and so µess(D) = 0. On
the other hand, this height function might take negative values at the points in the
boundary G \ G [Cha00, Corollaire 4.6]. In these cases we have µabs(D) < 0 and so
D is outside of the scope of Yuan’s equidistribution theorem.

The next result is a direct application of Theorem 7.4.

Theorem 7.10. The essential minimum function is differentiable at D with

∂E µ
ess(D) =

((M can)r · (π∗N can)g · E)

(M r · π∗Ng)
for every E ∈ D̂iv(G)R.

In particular, D satisfies the v-adic equidistribution property at every v ∈ MK with

νD,v =
c1(M

can
v )∧r ∧ c1(π∗N can

v )∧g

(M r · π∗Ng)
=
c1(Dv)

∧r+g

(Dr+g)
.

Proof. We have R(M) ̸= {0} because M is effective, and R(π∗N) ̸= {0} because π∗N
is semiample. As explained, D is ample and both M can and π∗N can are semipositive.
Then Theorem 7.4 gives the stated differentiability for the essential minimum function.

To apply the formula of Theorem 7.4(2) for the derivative ∂E µ
ess(D) we need to

determine the elements a ∈ N2
r+g for which ℓa1+2a2 = deg([ℓ]G) = ℓr+2g. The only one

is a = (r, g), and so we obtain the desired expression. The formulae for the v-adic
equidistribution measure then follow from Proposition 4.6 and Theorem 7.4(3). □

Remark 7.11. When v is Archimedean, the equidistribution measure in this result
coincides with the Haar probability measure on the maximal compact subgroup Sv ≃
(S1)r+2g of Gan

v , see for instance [Küh22, Lemma 5.2].
When v is non-Archimedean, the description of this measure seems more com-

plicated. For abelian varieties, they were described by Gubler in terms of convex
geometry [Gub10] but the extension to the semiabelian case is still pending.

Remark 7.12. In our current semiabelian setting, the sequence of semipositive ap-

proximations of D from Lemma 7.5 applied with D
′
= D verifies

Qn ≡ ℓ−nM can + π∗N can, n ∈ N,
and for the corresponding inradius, degree and absolute minimum we have r(Qn;D) ≥
ℓ−n, (Qr+g

n ) = ℓ−rn(Dr+g) and µabs(Qn) = ℓ−2nµabs(D) for each n. Hence

0 ≤ µess(D)− µabs(Qn)

r(Qn;D)
=

−µabs(Qn)

r(Qn;D)
≤ −µabs(D)

ℓn

and so the condition (4.2) is satisfied. On the other hand, this is not the case for the
stronger condition from Remark 4.9 as soon as r ≥ 2.

We next extend this equidistribution result to the closure of a subvariety of G
with vanishing essential minimum. By the semiabelian Bogomolov conjecture, proved
by David and Philippon [DP00], these subvarieties are translates of semiabelian sub-
varieties by torsion points, and so they do not provide examples of equidistribution
phenomena beyond those already obtained. However this extension is the centerpiece
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of Kühne’s approach to this conjecture [Küh22, Proposition 4.1] and so it is worth
showing that it can also be derived from our results.

Let Y ⊂ G be the closure of a subvariety of G, and set e = dim(Y ) and e′ =
dim(π(Y )). Then Y is not contained in the support ofM , and after possibly replacing
the divisor N ∈ Div(A) by a linearly equivalent one, we assume without loss of
generality that Y is neither contained in the support of π∗N . Hence we can consider
the restriction of D to this subvariety.

Proposition 7.13. With notation as above, assume that µess(D|Y ) = 0. Then D|Y
satisfies the v-adic equidistribution property for every v ∈ MK with

νD|Y ,v =
c1(M

can
v )∧e−e′ ∧ c1(π∗N can

v )∧e
′ ∧ δY an

v

(M e−e′ · π∗N e′ · Y )
.

Proof. For each n ∈ N let Qn = ℓ−nM can + π∗N can. Then Qn is ample, Qn is semi-

positive and D − Qn is effective. Let Ỹ be the normalization of the subvariety Y ,

and denote by D|
Ỹ
and Qn|Ỹ the adelic R-divisors on Ỹ obtained by pullback. Since

the normalization morphism is birational and Y is not contained in the support of M
and π∗N , we have that Qn|Ỹ is a semipositive approximation of D|

Ỹ
. Its absolute

minimum can be estimated as

0 = µess(D|Y ) = µess(D|
Ỹ
) ≥ µabs(Qn|Ỹ ) ≥ µabs(Qn) = ℓ−2nµabs(D),

where the last equality comes from the fact that Qn ≡ ℓ−2n([ℓ]◦n,∗
G

D) and the invari-

ance of the absolute minimum with respect to pullback by surjective morphisms. On
the other hand we have that Qn|Ỹ − ℓ−nD|

Ỹ
= (1− ℓ−n)π∗N |

Ỹ
is effective and so

r(Qn|Ỹ ;D|
Ỹ
) ≥ ℓ−n.

Hence limn→∞ µabs(Qn|Ỹ )/r(Qn|Ỹ ;D|
Ỹ
) = 0, and so Theorem 4.8 and Remark 4.10

imply that D|Y satisfies the equidistribution property for every v ∈ MK with

νD|Y ,v = lim
n→∞

c1((Qn|Y )v)∧e

((Qn|Y )e)
= lim

n→∞

c1(Qn,v)
∧e ∧ δY an

v

(Qe
n · Y )

.

To compute this limit, first note that

(Qe
n · Y ) =

e∑
j=0

ℓ−n(e−j)

(
e

j

)
(M e−j · π∗N j · Y ).

For each j consider the intersection product [M e−j · Y ] in the Chow group of j-
dimensional cycles of Y . By the projection formula we have

(M e−j · π∗N j · Y ) = (π∗[M
e−j · Y ] ·N j),

where the left intersection number is computed over Y and the right over π(Y ). In
particular this quantity vanishes for j > e′ = dim(π(Y )). On the other hand, for j = e′

it is equal to (M e−e′ · F ) (N e′) for a general fiber F of the projection Y → π(Y ), and
therefore it is positive because M is relatively ample and N is ample. Hence

(Qe
n · Y ) = ℓ−n(e−e′)

(
e

e′

)
(M e−e′ · π∗N e′ · Y ) +O(ℓ−n(e−e′+1)), (7.8)

and the dominant term in this asymptotics is positive.
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Furthermore the measure c1(Qn,v)
∧e∧δY an

v
is zero whenever j > e′ because its total

mass vanishes, and therefore

c1(Qn,v)
∧e ∧ δY an

v
=

e′∑
j=0

ℓ−n(e−j)

(
e

j

)
c1(M

can
v )∧e−j ∧ c1(π∗N can

v )∧j ∧ δY an
v
.

The statement then follows by taking the limit for n → ∞ of the ratio between this
asymptotics and that in (7.8). □

Finally we strengthen the semiabelian equidistribution property to include test
functions with logarithmic singularities along the closure of a torsion hypersurface or
an irreducible component of the boundary. Recall that a hypersurface of G is torsion
if it is the translate of a semiabelian hypersurface of G by a torsion point.

Theorem 7.14. Let (xℓ)ℓ be a D-small generic sequence in G(K) and E an effective
divisor on G such that each irreducible component of [E] is either the closure of a
torsion hypersurface of G or an irreducible component of G \ G. Then for every
v ∈ MK and any function φ : G

an
v → R∪{±∞} with at most logarithmic singularities

along E we have

lim
ℓ→∞

∫
G

an
v

φdδO(xℓ)v =

∫
G

an
v

φ
c1(Dv)

∧r+g

(Dr+g)
.

Proof. This follows from Theorem 7.9 noting that every irreducible component of [E]
is a preperiodic hypersurface for the endomorphism [ℓ]G for any ℓ > 1. □

8. Quasi-projective varieties

In this section we extend our study to the setting of adelic line bundles on quasi-
projective varieties in the sense of Yuan and Zhang [YZ26]. We start by recalling
the elements of this theory in terms of adelic R-divisors on quasi-projective varieties,
following the presentation of Burgos and Kramer in [BK25, Section 3]. Once the basic
constructions and facts are achieved, our arguments can be applied in a rather direct
way. For brevity we focus on the variant from Section 5.3, whose extension (Theo-
rem 8.11) generalizes Yuan and Zhang’s quasi-projective equidistribution theorem.

8.1. Adelic R-divisors on quasi-projective varieties. First we consider the geo-
metric case. Let X be a normal projective variety over K of dimension d ≥ 1 and B
an effective divisor on X. Set U = X \ supp(B) and let R(X,U) be the category of
normal modifications of X which are isomorphisms over U . Given such a modification
π : Xπ → X, we write (Xπ, π) or simply π for the corresponding object in R(X,U).
The space of model R-divisors on U is defined as the direct limit

Div(U)mod
R = lim−→

π∈R(X,U)

Div(Xπ)R.

Given D,D′ ∈ Div(U)mod
R we write D ≥ D′ or D′ ≤ D if there exists (Xπ, π) ∈

R(X,U) such that D,D′ ∈ Div(Xπ)R and D − D′ is effective. The B-adic norm on
Div(U)mod

R (with possibly infinite values) is defined as

∥D∥B = inf{ε ∈ R>0 | − εB ≤ D ≤ εB} for every D ∈ Div(U)mod
R .

The space Div(U)adelR is then defined as the completion of Div(U)mod
R for the B-adic

topology, and its elements are called adelic R-divisors on U . This space depends on
the open subset U but not on the effective divisor B.
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Let D ∈ Div(U)adelR and (Di)i a Cauchy sequence in Div(U)mod
R representing this

adelic R-divisor. The volume of D is defined as

vol(D) = lim
i→∞

vol(Di).

It follows from [YZ26, Theorems 5.2.1 and 5.2.9] that this limit exists in R and does
not depend on the choice of the approximating sequence.

We say that D is big if vol(D) > 0. We also say that D is nef if the sequence
(Di)i can be chosen such that Di is nef for every i. We then say that D is integrable
if it can be written as D = A1 − A2 with A1, A2 ∈ Div(U)adelR nef. The subspace of
integrable adelic R-divisors on U is denoted by Div(U)intR .

The intersection product of integrable adelic R-divisors is the symmetric multilinear
map from [BK25, Theorem 3.7]

(D1, . . . , Dd) ∈ (Div(U)intR )d 7−→ (D1 · · ·Dd) ∈ R.
For j = 1, . . . , d let Dj be a nef adelic R-divisor on U and choose a Cauchy sequence
(Dj,i)i of nef model R-divisors on U representing Dj . Then

(D1 · · ·Dd) = lim
i→∞

(D1,i · · ·Dd,i)

with the intersection products in the right-hand side computed in common models.
By [BK25, Theorem 3.7], this limit exists in R and does not depend on the choice of
the sequences. We have (Dd) = vol(D) for every nef D ∈ Div(U)adelR .

Definition 8.1. Let P,A be big adelic R-divisors on U . The inradius of P with
respect to A is defined as

r(P ;A) = sup{λ ∈ R | P − λA is big}.

Lemma 8.2. Let P,A be big adelic R-divisors on U , and let (Pi)i and (Ai)i be Cauchy
sequences in Div(U)mod representing P and A. Then

r(P ;A) = lim
i→∞

r(Pi;Ai).

Moreover, r(P ;A) is a positive real number.

Proof. By definition we have

lim
i→∞

vol(Pi − λAi) = vol(P − λA) for every λ ∈ R. (8.1)

Let λ < r(P ;A). Then P − λA is big and so the right-hand side of (8.1) is strictly
positive, which implies that Pi − λAi is big for every i large enough. Since λ is
arbitrary, we obtain

lim inf
i→∞

r(Pi;Ai) ≥ r(P ;A).

Now let λ < lim supi→∞ r(Pi;Ai). Then there are subsequences (Pik)k and (Aik)k and
a constant c > 0 such that (Pik − λAik)− cAik is big for every k. Hence the left-hand
side of (8.1) is strictly positive and P − λA is big. Since λ is arbitrary, we get

lim sup
i→∞

r(Pi;Ai) ≤ r(P ;A)

thus completing the proof of the first statement.
For the second, since bigness is an open condition we have r(P ;A) > 0. This

condition also implies that there exist P ′, A′ ∈ Div(X)R with P ′ − P and A−A′ big,
and so r(P ;A) ≤ r(P ′;A′) <∞. □
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Next we consider the arithmetic case. An arithmetic variety X over OK is a flat
integral scheme over Spec(OK). Assume that X is normal and projective of dimension
d + 1 and denote by X its generic fiber, which is a normal projective variety over
K of dimension d. We denote by Div(X )R the space of R-divisors on X , and for
D ∈ Div(X )R we denote by D|X ∈ Div(X)R the restriction to X.

An arithmetic R-divisor on X is a pair D = (D, (gv)v∈M∞
K
) where D is an R-divisor

on X and gv a continuous v-adic Green function for D|X for every v ∈ M∞
K . The

space of arithmetic R-divisors on X is denoted by D̂iv(X )R. We say that D is effective
(respectively strictly effective) if D is effective and gv ≥ 0 (respectively gv > 0) on
Xan

v \ supp(D)anv for every v.
Let B = (B, (gB,v)v) be a strictly effective arithmetic divisor on X and set U =

X \ supp(B). Consider also the underlying divisor and the open subset

B = B|X ∈ Div(X) and U = X \ supp(B) ⊂ X.

We denote by R(X ,U) the category of normal modifications π : Xπ → X that are
isomorphisms over U . Such a normal modification is denoted by (π,Xπ) or simply
by π. The space of model arithmetic R-divisors on U is the direct limit

D̂iv(U)mod
R = lim−→

π∈R(X ,U)

D̂iv(Xπ)R.

Given D1,D2 ∈ D̂iv(U)mod
R we write D1 ≥ D2 or D2 ≤ D1 whenever D1 − D2 is

effective on a model where both D1 and D2 are defined. The B-adic norm is defined as

∥D∥B = inf{ε ∈ R>0 | − εB ≤ D ≤ εB} for D ∈ D̂iv(U)mod
R .

The space D̂iv(U)adelR of adelic R-divisors on U is then defined as the completion of

D̂iv(U)mod
R with respect to the B-adic topology. As in the geometric case, it depends

only on the open subset U .
Remark 8.3. In [BK25, Section 3.3] arithmetic varieties are required to have smooth
generic fiber, and arithmetic R-divisors are assumed to be of smooth type. Neverthe-

less, our space D̂iv(U)adelR coincides with that in loc. cit. up to possibly shrinking the
open subset U , by the existence of compactifications with smooth generic fiber and
the density of Green functions of smooth type among those of continuous type [BK25,
Remark 3.14].

Given D ∈ D̂iv(U)adelR we denote by (Di)i a Cauchy sequence in D̂iv(U)mod
R repre-

senting this adelic R-divisor. For convenience, we assume that such sequences have
bounded differences even for small indices, namely that there exists c ∈ R≥0 with

∥Di −Dj∥B ≤ c for every i, j. (8.2)

For each i choose (πi,Xi) ∈ R(X ,U) such that Di ∈ D̂iv(Xi)R, set Xi for the generic
fiber of Xi and then Di = Di|Xi . We have that (Di)i is a sequence in Div(U)mod

R that

is Cauchy for the B-adic topology and so defines an element D ∈ Div(U)adelR , called

the geometric adelic R-divisor of D.

Also for each i we write Di = (Di, (gi,v)v∈M∞
K
) ∈ D̂iv(Xi)R and we denote by

Di = (Di, (gi,v)v∈MK
) ∈ D̂iv(Xi)R (8.3)

the adelic R-divisor on Xi in the sense of Definition 2.1 obtained by adding the non-
Archimedean Green functions induced by Di, as explained in Section 2.1.
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Remark 8.4. We denote the elements of D̂iv(X )R by overlined calligraphic letters

and following the pattern described above, the akin elements of Div(X )R, D̂iv(X)R
and Div(X)R are denoted by either the same calligraphic letter or the correspond-
ing Roman one, and either keeping or not the overline. Similarly, the elements of

D̂iv(U)adelR are denoted by overlined calligraphic letters and those in Div(U)adelR by the
corresponding non-overlined Roman letter.

We say that D is pseudo-effective (respectively semipositive, respectively nef ) if
the sequence (Di)i can be chosen such that Di is pseudo-effective (respectively semi-
positive, respectively nef) for every i. We say that D is integrable if it is the difference
of two nef adelic R-divisors on U . The subspace of integrable adelic R-divisors on U
is denoted by D̂iv(U)intR .

Remark 8.5. Our definition of nef adelic R-divisors on U coincides with that in [BK25]
but differs slightly from the one in [YZ26], where nef adelic divisors in the above sense
are called strongly nef. However, the two definitions coincide after possibly shrinking
the open subset U [BK25, Remarks 3.5, 3.16 and 3.39].

When D is integrable, for each v ∈ MK we denote by c1(Dv)
∧d the signed measure

on Uan
v defined in [YZ26, Section 3.6.7] and extended to integrable adelic R-divisors

by multilinearity. By [YZ26, Lemma 5.4.4] it has total mass (Dd). If D is nef and Di

is also nef for every i, then∫
Uan
v

φ c1(Dv)
∧d = lim

i→∞

∫
Xan

i,v

φ c1(Di,v)
∧d (8.4)

for every continuous function φ : Uan
v → R with compact support. Here we view φ as

a function on Xan
i,v via the open immersion Uan

v ↪→ Xan
i,v .

For each i we denote by hDi
: Xi(K) → R the height function of Di ∈ D̂iv(Xi)R.

The fact that (Di)i is a Cauchy sequence readily implies that limi→∞ hDi
(x) exists for

every x ∈ U(K). This limit does not depend on the choice of the sequence, and so we
define the height function hD : U(K) −→ R by setting

hD(x) = lim
i→∞

hDi
(x) for every x ∈ U(K).

The arithmetic intersection product of integrable adelic R-divisors is the symmetric
multilinear map from [BK25, Theorem 3.37]

(D1, . . . ,Dd+1) ∈ (D̂iv(U)intR )d+1 7−→ (D1 · · · Dd+1) ∈ R.
For j = 1, . . . , d+1 let Dj be a nef adelic R-divisor on U and choose a Cauchy sequence

(Dj,i)i of nef model R-divisors on U representing Dj . Then

(D1 · · · Dd+1) = lim
i→∞

(D1,i · · ·Dd+1,i),

where Di,j , j = 1, . . . , d + 1, are the associated adelic R-divisors as in (8.3) and
the arithmetic intersection products in the right-hand side are computed in common
models.

For any dominant morphism ϕ : U ′ → U of normal quasi-projective arithmetic

varieties there is a pullback map ϕ∗ : D̂iv(U)adelR → D̂iv(U ′)adelR [BK25, Section 3.5]. If
ϕ is birational then

(D1 · · · Dd+1) = (ϕ∗D1 · · ·ϕ∗Dd+1).
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We denote by [∞] ∈ D̂iv(X )R the arithmetic divisor over the zero divisor on X
with gv = 1 for every v ∈ M∞

K . We have

(D1 · · · Dd · [∞]) = (D1 · · ·Dd).

8.2. Essential and absolute minima. Let D ∈ D̂iv(U)adelR with big D ∈ Div(U)adelR .

Let (Di)i be a Cauchy sequence in D̂iv(U)mod
R representing D, and for each i let

Di ∈ D̂iv(Xi)R as in (8.3).
The essential minimum of D is defined in the expected way as the quantity

µess(D) = sup
V ⊊U

inf
x∈(U\V )(K)

hD(x),

the supremum being over all the proper closed subsets V ⊊ U . On the other hand,
there is no direct extension of the absolute minimum to the quasi-projective setting
because the height function of D is only defined on U(K). For this notion we restrict
to the case when D is semipositive and define its absolute minimum as the quantity

µabs(D) = sup{λ ∈ R | D − λ[∞] is nef},
in agreement with (2.6).

We need some auxiliary results.

Lemma 8.6. If D is semipositive and µabs(D) > −∞, then D − µabs(D)[∞] is nef.

Proof. Let (λn)n be a sequence of real numbers converging to µabs(D) from below.

Then for every n there exists a Cauchy sequence (Dn,i)i in D̂iv(U)mod
R representing

D − λn[∞] with Dn,i nef for every i. Since B is strictly effective we have that ∥[∞]∥B
is a real number. Then for any ε > 0 and every n and i sufficiently large we have

∥Dn,i − (D − µabs(D) [∞])∥B ≤ ∥Dn,i − (D − λn[∞])∥B + (µabs(D)− λn) ∥[∞]∥B < ε.

It follows that D−µabs(D)[∞] can be represented by a Cauchy sequence of nef model
arithmetic R-divisors, and so it is nef. □

Lemma 8.7. We have µess(D) = lim
i→∞

µess(Di).

Proof. For any k ∈ N and t ∈ R we have

µess(kD + t [∞]) = k µess(D) + t and µess(kDi + t [∞]) = k µess(Di) + t, i ∈ N,

and so we can replace without loss of generality D by kD+t [∞] and Di by kDi+t [∞].
Since D is big, taking k and t sufficiently large and applying Lemma 2.7 we can assume
that B ≤ Di, first for i = 1 and then for every i ∈ N using the assumption (8.2).

Since (Di)i is Cauchy, there exists a sequence of positive real numbers (εi)i con-
verging to zero such that

Di − εiB ≤ Dj ≤ Di + εiB for every 0 ≤ i ≤ j. (8.5)

Since the support of ±(Dj −Di) + εiB does not intersect U , we get from (8.5)

hDi
(x)− εihB(x) ≤ hDj

(x) ≤ hDi
(x) + εihB(x) for every x ∈ U(K). (8.6)

Since B ≤ Di, there exists a dense open subset Ui ⊂ U such that hB(x) ≤ hDi
(x) for

every x ∈ Ui(K). Using this and taking the limit for j → ∞ in (8.6) we deduce

(1− εi)hDi
(x) ≤ hD(x) ≤ (1 + εi)hDi

(x) for every x ∈ Ui(K).
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Since Ui is dense, this implies that (1− εi)µ
ess(Di) ≤ µess(D) ≤ (1 + εi)µ

ess(Di), and
the lemma follows by letting i→ ∞. □

Lemma 8.8. Let E ∈ D̂iv(U)adelR such that E ∈ Div(U)adelR is big and D−E is pseudo-

effective. Then µess(D) ≥ µess(E).

Proof. Let (E i)i and (Mi)i be Cauchy sequences in D̂iv(U)mod
R representing respec-

tively E and D − E , with Mi pseudo-effective for every i. Then there is a sequence
(εi)i of real numbers converging to zero such that

Mi ≤ Di − E i + εiB for every i. (8.7)

Then (Di + εiB)i is a Cauchy sequence representing D which by (8.7) satisfies that
(Di + εiB)− E i is pseudo-effective for every i. By Lemmas 2.16(4) and 8.7 we have

µess(D) = lim
i→∞

µess(Di + εiB) ≥ lim
i→∞

µess(Ei) = µess(E).

□

The next result is the quasi-projective version of Corollary 5.3, and will be the key
ingredient in the proof of our quasi-projective equidistribution theorem.

Proposition 8.9. Let P, E ∈ D̂iv(U)adelR with P nef and P ∈ Div(U)adelR big. Assume

that there exists a nef A ∈ D̂iv(U)adelR such that A± E are nef and A ∈ Div(U)adelR is
big. There exists a constant cd depending only on d such that

µess(P + λE) ≥ (Pd+1
)

(d+ 1) vol(P + λE)
+

(Pd · E)
(P d)

λ− cd
(Pd · A)

(P d)

λ2

r(P ;A)

for every 0 ≤ λ < r(P ;A)/2. In particular, if E = 0 ∈ Div(U)adelR then

µess(P + λE) ≥ (Pd+1
)

(d+ 1)(P d)
+

(Pd · E)
(P d)

λ− cd
(Pd · A)

(P d)

λ2

r(P ;A)
.

Proof. Let (P i)i, (Mi)i and (N i)i be Cauchy sequences in D̂iv(U)mod
R representing

respectively P,A+ E and A−E and such that P i,Mi and N i are nef and defined on
the same projective arithmetic variety Xi for every i. Set

Ai =
Mi +N i

2
and E i =

Mi −N i

2
.

Then (Ai)i and (E i)i are Cauchy sequences representing A and E , and we have that
Ai and Ai ± Ei are nef for every i.

Let λ ∈ [0, r(P ;A)/2). By Lemma 8.2 we have λ ∈ [0, r(Pi;Ai)/2) for every
sufficiently large i. In particular

Pi + λEi = Pi − λAi + λ(Ai + Ei)

is big because Pi − λAi is big and Ai + Ei is nef, hence pseudo-effective. Then by
Corollary 5.3 there exists a constant cd depending only on d such that

µess(P i + λEi) ≥
(P

d+1
i )

(d+ 1) vol(Pi + λEi)
+

(P
d
i · Ei)

(P d
i )

λ− cd
(P

d
i ·Ai)

(P d
i )

λ2

r(Pi;Ai)
.

We conclude by letting i→ ∞. □
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8.3. Equidistribution on quasi-projective varieties. Let D ∈ D̂iv(U)adelR with

big D ∈ Div(U)adelR , as in the previous section.

Definition 8.10. A semipositive approximation of D is a pair (ϕ,Q) where

(1) ϕ : U ′ → U is a birational morphism of normal quasi-projective arithmetic vari-
eties,

(2) Q is a semipositive adelic R-divisor on U ′ with big Q ∈ Div(U)adelR ,

(3) ϕ∗D −Q is pseudo-effective.

A sequence (xℓ)ℓ in U(K) is called generic if for every closed subset V ⊊ U there
exists ℓ0 ∈ N such that xℓ /∈ V (K) for every ℓ ≥ ℓ0. A generic sequence (xℓ)ℓ is called
D-small if

lim
ℓ→∞

hD(xℓ) = µess(D).

For every x ∈ U(K) the Galois orbit O(x) ⊂ X(K) lies in U(K). Thus for every
v ∈ MK the v-adic Galois orbit O(x)v lies in Uan

v , and in particular δO(x)v is a
probability measure on Uan

v .
The following is the quasi-projective version of Theorem 5.8.

Theorem 8.11. Assume that there exists a sequence (ϕn : Un → U ,Qn)n of semipos-
itive approximations of D such that

lim
n→∞

1

r(Qn;ϕ∗nD)

(
µess(D)− (Qd+1

n )

(d+ 1) (Qd
n)

)
= 0, sup

n∈N

µess(D)− µabs(Qn)

r(Qn;ϕ∗nD)
<∞. (8.8)

Let v ∈ MK , and for each n ≥ 1 let νn,v be the pushforward to Uan
v of the normalized

v-adic Monge-Ampère measure c1(Qn,v)
∧d/(Qd

n) on U
an
n,v. Then

(1) the sequence (νn,v)n converges weakly to a probability measure νD,v on Uan
v ,

(2) for every D-small generic sequence (xℓ)ℓ in U(K), the sequence of probability
measures (δO(xℓ)v)ℓ on Uan

v converges weakly to νD,v.

Proof. Let v ∈ MK and φ : Uan
v → R a continuous function with compact support,

and let (xℓ)ℓ be a D-small generic sequence in U(K). We need to show that

lim
ℓ→∞

∫
Uan
v

φdδO(xℓ)v = lim
n→∞

∫
Uan
v

φdνn,v. (8.9)

Let ε > 0. Since φ has compact support, we can view it as an element of C(Xan
v ).

By [GM22, Proposition 2.11 and Theorem 2.13], after possibly extending the base
field K, there exists a Gal(Kv/Kv)-invariant φε ∈ C(Xan

v ) such that |φε − φ| < ε on
Xan

v and such that the adelic divisor E := 0
φε as in (2.8) is DSP. Then by Lemma 2.14

there exists A ∈ D̂iv(X)R such that both A and A ± E are nef and A ∈ Div(X)R is
big. Shrinking U if necessary, we view these adelic R-divisors on X as elements of

D̂iv(U)intR , in which case we respectively denote them by E and A.

For each n ∈ N set Q̃n = Qn − µabs(Qn) [∞]. By Lemma 8.6 we have that Q̃n is
nef. Moreover, the second condition in (8.8) implies

κ := sup
n∈N

(Q̃d
n · ϕ∗nA)

(Qd
n)

<∞.
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We omit the proof, as it is identical to that for Lemma 5.6. In this respect, note
that Zhang’s inequality remains valid in the quasi-projective setting: this is [YZ26,
Theorem 5.3.3], and alternatively it follows from Proposition 8.9 applied with λ = 0.

Let n ∈ N and λ ∈ (0, r(Qn;ϕ
∗
nA)/2). By Proposition 8.9 applied with P = Q̃n,

there exists a constant cd depending only on d such that

µess(Q̃n + λϕ∗nE) ≥
(Q̃d+1

n )

(d+ 1) (Qd
n)

+
(Q̃d

n · ϕ∗nE)
(Qd

n)
λ− cd κ

λ2

r(Qn;ϕ∗nA)
.

Since (Q̃d+1
n ) = (Qd+1

n ) − (d + 1)µabs(Qn) (Q
d
n) and µess(Q̃n + λϕ∗nE) = µess(Qn +

λϕ∗nE)− µabs(Qn) we obtain

µess(Qn + λϕ∗nE) ≥
(Qd+1

n )

(d+ 1) (Qd
n)

+
(Q̃d

n · ϕ∗nE)
(Qd

n)
λ− cd κ

λ2

r(Qn;ϕ∗nA)
.

On the other hand we have

µess(D) + λ lim inf
ℓ→∞

hE(xℓ) = lim inf
ℓ→∞

hD+λE(xℓ) ≥ µess(D + λE) ≥ µess(Qn + λϕ∗nE),

where the last inequality is given by Lemma 8.8. Therefore

lim inf
ℓ→∞

hE(xℓ) ≥
( (Qd+1

n )

(d+ 1)(Qd
n)

− µess(D)
) 1

λ
+

(Q̃d
n · ϕ∗nE)
(Qd

n)
− cd κ

λ

r(Qn;ϕ∗nA)
. (8.10)

It follows from the first condition in (8.8) and Lemma 1.2 that

lim
n→∞

1

r(Qn;ϕ∗nA)

(
µess(D)− (Qd+1

n )

(d+ 1)(Qd
n)

)
= 0.

Therefore, applying the inequality (8.10) to a suitable choice of λ = λn and taking
the supremum limit for n→ ∞ gives

lim inf
ℓ→∞

hE(xℓ) ≥ lim sup
n→∞

(Q̃d
n · ϕ∗nE)
(Qd

n)
. (8.11)

To conclude we adapt the arguments in the proof of [YZ26, Theorem 5.4.3]. Let

n ∈ N and choose a Cauchy sequence (Qn,i)i in D̂iv(Un)
mod representing Q̃n and such

that Qn,i is nef for every i. Let Xn,i be a projective arithmetic variety on which Qn,i

is defined, denote by Xn,i its generic fiber, and set Qn,i ∈ D̂iv(Xn,i)R as in (8.3).

Let v ∈ MK . By (8.4), the v-adic Monge-Ampère measures c1(Qn,i,v)
∧d converge

to that of Q̃n, which coincides with that of Qn. Then

(Q̃d
n · ϕ∗nE)
(Qd

n)
=

nv
(Qd

n)
lim
i→∞

∫
Xan

n,i,v

φε c1(Qn,i,v)
∧d

≥ nv
(Qd

n)
lim
i→∞

∫
Xan

n,i,v

φ c1(Qn,i,v)
∧d − nvε

=
nv

(Qd
n)

∫
Uan
n,v

φ c1(Qn,v)
∧d − nvε = nv

∫
Uan
v

φdνn,v − nvε,

where in these integrals we write φε and φ for their pullbacks to Xan
n,i,v and Uan

n,v.
Moreover

nvε+ nv

∫
Uan
v

φdδO(xℓ)v ≥ nv

∫
Xan

v

φε dδO(xℓ)v = hE(xℓ) for every ℓ ∈ N.
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Combining this with (8.11) and letting ε→ 0 we obtain

lim inf
ℓ→∞

∫
Uan
v

φdδO(xℓ)v ≥ lim sup
n→∞

∫
Uan
n,v

φdνn,v,

and we deduce (8.9) by applying this to −φ. □

The next consequence is the number field case of the Yuan and Zhang’s equidistri-
bution theorem in the quasi-projective setting [YZ26, Theorem 5.4.3].

Corollary 8.12. Assume that D is nef and that

µess(D) =
(Dd+1

)

(d+ 1)(Dd)
.

Then for every v ∈ MK and every D-small generic sequence (xℓ)ℓ in U(K) the se-
quence of probability measures (δO(xℓ)v)ℓ on Uan

v converges weakly to c1(Dv)
∧d/(Dd).

Proof. Apply Theorem 8.11 to the constant sequence (ϕn,Qn) = (IdU ,D), n ∈ N. □

Remark 8.13. We assume throughout that U is normal to be able to work with
R-divisors. Nevertheless, both Theorem 8.11 and Corollary 8.12 can be applied to an
adelic divisor D on an arbitrary quasi-projective arithmetic variety U over Spec(OK)
just shrinking to a normal open subset.

Recently, Biswas proved the differentiability of the arithmetic volume function
and deduced a quasi-projective version of Chen’s equidistribution theorem [Bis24]. It
would be interesting to check if this result also follows from Theorem 8.11 by adapting
the arguments we used in the proof of Corollary 4.12.

Appendix A. Auxiliary results on convex analysis

Here we recall the constructions and properties from convex analysis that are used
in our study of toric varieties in Section 6. We also establish some auxiliary results,
most notably Proposition A.3 concerning the rate of the decay of the sup-level sets of
a concave function as the level approaches the maximum value.

Fix an integer d ≥ 1 and let C ⊂ Rd be a convex body, that is a compact convex
subset with nonempty interior.

Definition A.1. For a linear functional u ∈ (Rd)∨ we denote by w(C, u) the length
of the interval u(C) ⊂ R. The width of C is defined as

w(C) = inf
u∈Sd−1

w(C, u),

where Sd−1 denotes the unit sphere of (Rd)∨ ≃ Rd.
For another convex body B ⊂ Rd, the inradius of C with respect to B is defined as

r(C;B) = sup{λ ∈ R>0 | ∃x ∈ Rd such that λB + x ⊂ C}.
When B is the unit ball of Rd, it is the classical inradius from Euclidean geometry.

The inradius and the width can be compared up to scalar factors: there are con-
stants c1, c2 > 0 depending only on d and B such that

c1w(C) ≤ r(C;B) ≤ c2w(C). (A.1)

The first inequality comes from [BF87, page 86, inequality (9)] whereas the second is
clear from the definitions.
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Let f : C → R be a concave function and set µ = supx∈C f(x). For each t ≤ µ we
denote by

St(f) = {x ∈ C | f(x) ≥ t}
the corresponding sup-level set. It is a nonempty compact convex subset of C that is
a convex body whenever t < µ. We also set Cmax = Sµ(f).

We next introduce the basic objects of the differential analysis of concave functions.

Definition A.2. For x0 ∈ C, the sup-differential of f at x0 is the closed convex
subset of (Rd)∨ defined as

∂f(x0) = {u ∈ (Rd)∨ | ⟨u, x− x0⟩ ≥ f(x)− f(x0) for every x ∈ C}.
Its elements are called the sup-gradients of f at x0.

A point x0 ∈ C lies in Cmax if and only if 0 ∈ ∂f(x0). When this is the case, the
point 0 is not a vertex of ∂f(x0) if and only if there exists u ∈ (Rd)∨ \ {0} such that
both u and −u belong to this sup-differential or equivalently, if and only if

f(x) ≤ µ− |⟨u, x− x0⟩| for every x ∈ C. (A.2)

This condition does not depend on the choice of x0 ∈ Cmax: if (A.2) holds then
⟨u, x1−x0⟩ = 0 for every x1 ∈ Cmax, and so this inequality also holds with x0 replaced
by x1.

The next proposition is a rigidity result that allows to determine when a concave
function admits a “Canadian tent” upper bound like (A.2) in terms of the rate of decay
of the inradius or the width of its sup-level sets as the level approaches its maximum.

Proposition A.3. The following conditions are equivalent:

(1) for any convex body B ⊂ Rd we have lim
t→µ

µ− t

r(St(f);B)
= 0,

(2) lim
t→µ

µ− t

w(St(f))
= 0,

(3) for every u ∈ (Rd)∨ \ {0} we have lim
t→µ

µ− t

w(St(f), u)
= 0,

(4) for any x0 ∈ Cmax we have that 0 ∈ (Rd)∨ is a vertex of ∂f(x0).

Its proof relies on the next two lemmas.

Lemma A.4. With the previous notation, we have

(1) for every u ∈ (Rd)∨\{0} the function t ∈ (−∞, µ) 7→ µ− t

w(St(f), u)
is non-increasing,

(2) the function t ∈ (−∞, µ) 7→ µ− t

w(St(f))
is non-increasing.

Proof. First suppose that d = 1. Then choose x0 ∈ Cmax and for each pair t, t′ ∈ R
with t′ < t < µ consider the affine map ι : R→ R defined as

ι(x) =
t− t′

µ− t′
x0 +

µ− t

µ− t′
x.

It follows from the concavity of f that ι(St′(f)) ⊂ St(f). Denoting by ℓ the Lebesgue
measure on R, this gives

µ− t

µ− t′
ℓ(St′(f)) ≤ ℓ(St(f)). (A.3)
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Now let d be any positive integer. Take u ∈ (Rd)∨ \ {0} and consider the direct
image of f with respect to u, which is the concave function u∗f : u(C) → R defined as

u∗f(y) = sup{f(x) | x ∈ C such that ⟨u, x⟩ = y} for every y ∈ u(C).

Clearly supy∈u(C) u∗f(y) = µ and St(u∗f) = u(St(f)) for every t ≤ µ. Then for any

t′ < t < µ the inequality (A.3) gives

µ− t′

w(St′(f), u)
=

µ− t′

ℓ(St′(u∗f))
≥ µ− t

ℓ(St(u∗f))
=

µ− t

w(St(f), u)
, (A.4)

proving (1). The statement (2) follows by choosing u ∈ Sd−1 such that w(St(f), u) =
w(St(f)) and applying (A.4) to show

µ− t′

w(St′(f))
≥ µ− t′

w(St′(f), u)
≥ µ− t

w(St(f), u)
=

µ− t

w(St(f))
,

as stated. □

Lemma A.5. Let x0 ∈ Cmax and t < µ. Then for every u ∈ (Rd)∨ \ {0} we have

f(x) ≤ µ− µ− t

w(St(f), u)
|⟨u, x− x0⟩| for every x ∈ C \ St(f).

Proof. Let x ∈ C \ St(f) and set t′ = f(x) < t. Since both x and x0 lie in St′(f) we
have |⟨u, x− x0⟩| ≤ w(St′(f), u). Combining this with Lemma A.4(1) we get

µ− f(x) ≥ µ− t′

w(St′(f), u)
|⟨u, x− x0⟩| ≥

µ− t

w(St(f), u)
|⟨u, x− x0⟩|,

which gives the statement. □

Proof of Proposition A.3. The equivalence between (1) and (2) follows from the in-
equalities (A.1), and clearly (2) implies (3).

Now assume (3). If (4) does not hold, then there exists x0 ∈ Cmax such that
0 ∈ ∂f(x0) is not a vertex of this convex subset, and so we can take u ∈ (Rd)∨ \ {0}
such that µ− |⟨u, x− x0⟩| ≥ f(x) for every x ∈ C as in (A.2).

For each t < µ choose y ∈ St(u∗f) = u(St(f)) such that

|y − ⟨u, x0⟩| ≥
1

2
w(St(f), u).

Taking x ∈ St(f) with ⟨u, x⟩ = y we have |⟨u, x− x0⟩| ≥ w(St(f), u)/2 and so

µ− t

w(St(f), u)
≥ µ− f(x)

w(St(f), u)
≥ |⟨u, x− x0⟩|

w(St(f), u)
≥ 1

2
,

which contradicts (3) and thus implies (4).
To close the loop, we show that (4) implies (2). For this suppose that (2) does not

hold, which by Lemma A.4 implies that there exists c > 0 such that

µ− t

w(St(f))
≥ c for every t < µ.

In particular dim(Cmax) < d since otherwise w(St(f)) ≥ w(Cmax) > 0 for every t < µ.
Take sequences (tk)k in (−∞, µ) and (uk)k in Sd−1 with limk→∞ tk = µ such that

w(Stk(f)) = w(Stk(f), uk) for every k. By the compacity of Sd−1 we can assume that
limk→∞ uk = u for a point u ∈ Sd−1. Take also x0 ∈ Cmax. By Lemma A.5 we have

µ− c |⟨uk, x− x0⟩| ≥ f(x) for every x ∈ C \ Stk(f).
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Now let x ∈ C \ Cmax. Then x /∈ Stk(f) for k ≫ 1 and so

µ− c |⟨u, x− x0⟩| = lim
k→∞

µ− c |⟨uk, x− x0⟩| ≥ f(x).

Since dim(Cmax) < d, this inequality extends to x ∈ Cmax by continuity. Therefore 0
is not a vertex of ∂f(x0) and so (4) does not hold. □

Definition A.6. The concave function f is said to be wide (at its maximum) if it
verifies any of the equivalent conditions in Proposition A.3.

Now a ssume that the considered concave function decomposes as a finite sum

f =
∑
i∈I

nifi (A.5)

where each ni is a positive real number and fi : C → R a concave function.

Definition A.7. A balanced family of sup-gradients for the decomposition (A.5) is a
family of vectors

ui ∈ (Rn)∨, i ∈ I,

such that there exists x0 ∈ Cmax with ui ∈ ∂fi(x0) for every i and
∑

i∈I niui = 0.

Proposition A.8. The decomposition f =
∑

i∈I nifi admits a balanced family of
sup-gradients. If f is wide then this family is unique.

Proof. For the first statement, the decomposition of f implies the decomposition of
its sup-differential at a point x0 ∈ C as the Minkowski sum

∂f(x0) =
∑
i∈I

ni ∂fi(x0), (A.6)

see for instance [BPS14, Proposition 2.3.9]. If x0 ∈ Cmax then 0 ∈ ∂f(x0), and so we
obtain a balanced family of sup-gradients by considering any decomposition of this
vector according to (A.6). This proves the first statement.

If f is wide then 0 ∈ ∂f(x0) is a vertex, and so the second statement is given by
[BPRS19, Proposition 3.15]. □

We denote by MV(C1, . . . , Cd) the mixed volume of a family of d convex bodies of
Rd, and by MI(f0, . . . , fd) the mixed integral of a family of concave functions on convex
bodies of Rd, both with respect to the Lebesgue measure of Rd. They are respectively
defined as alternating sums of Minkowski sums of convex bodies and sup-convolutions
of concave functions, see [BPS14, Definitions 2.7.14 and 2.7.16] for precisions.

The next lemma gives the continuity of the mixed integral with respect to the ap-
proximation of the domains of the involved concave functions. The proof is straight-
forward from the behavior of sup-convolutions with respect to restrictions of domains
and the continuity of the integral of a concave function on a convex body with respect
to the approximation of its domain.

Lemma A.9. For i = 0, . . . , d let fi : Ci → R be a concave function on a convex body,
and (Ci,n)n a sequence of convex bodies approaching Ci uniformly from inside. Then

lim
n→∞

MI(f0|C0,n , . . . , fd|Cd,n
) = MI(f0, . . . , fd).
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Finally, the next result allows to compute the mixed integral when all but one of
the involved concave functions are equal and affine. Recall that the Legendre-Fenchel
dual of a concave function on a convex body f : C → R is the concave function
f∨ : (Rd)∨ → R defined as

f∨(u) = inf
x∈C

⟨u, x⟩ − f(x). (A.7)

Lemma A.10. Let f : C → R an affine function on a convex body with linear part
u ∈ (Rd)∨ and constant c ∈ R. Then for any concave function on a convex body
g : B → R we have

MI(f, . . . , f, g) = MI(u|C , . . . , u|C , u|B) + c dMV(C, . . . , C,B)− d! vol(C) g∨(u).

Proof. The proof is based on [Gua18, Section 1.3] and we will freely use the notation
therein. This requires that both C and B are lattice polytopes, which we now suppose.

By Corollary 1.10 in loc. cit. we have

MI(f, . . . , f, g) = MI(u|C , . . . , u|C , g) + c dMV(C, . . . , C,B), (A.8)

and by Proposition 1.5 in loc. cit., the mixed real Monge-Ampère measure of u|C is

MM(u|C , . . . , u|C) = d! vol(C) δu

with δu the Dirac measure at the point u ∈ (Rd)∨. Hence applying the recursive
formula of Theorem 1.6 in loc. cit. to g and to u|B we get

MI(u|C , . . . , u|C , g)−MI(u|C , . . . , u|C , u|B) = d! vol(C) ((u|B)∨(u)− g∨(u)). (A.9)

The statement follows in this case from (A.8) and (A.9) together with the fact that
(u|B)∨(u) = infx∈B(⟨u, x⟩ − ⟨u, x⟩) = 0.

The case when C and B are arbitrary convex bodies is deduced from the previous
using the invariance of the formula with respect to homothecies and its continuity
with respect to uniform approximations. □

Remark A.11. For any u ∈ (Rd)∨ and convex bodies C1, C2 ⊂ Rd, the sup-convolution
of the restrictions u|C1 and u|C2 coincides with the restriction u|C1+C2 , that is

u|C1 ⊞ u|C2 = u|C1+C2 .

Hence the mixed integral MI(u|C , . . . , u|C , u|B) can be written as an alternating sum
of integrals of the linear function u on the Minkowski sum of several copies C and B.
In particular, the map u 7→ MI(u|C , . . . , u|C , u|B) is linear.
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