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1. Introduction

Let X be a projective variety of dimension d ≥ 1 over an algebraically closed
field k. The volume of a Cartier divisor D on X measures the asymptotic growth
of the linear systems |nD|, n ∈ N:

vol(D) = lim sup
n→∞

h0(X,nD)

nd/d!
.

This invariant depends only on the numerical equivalence class of D, and can be
extended to define a continuous function

vol : N1(X)R → R

on the real Néron-Severi group N1(X)R = N1(X) ⊗Z R of X (see [12, section
2.2.C] and [5, section 2.4] for details). The big cone Big(X) ⊆ N1(X)R is the
convex cone of classes α ∈ N1(X)R with vol(α) > 0. The study of the volume
function is an interesting topic of research, as emphasized in the survey [9]. For
example, it is believed that vol is real analytic on some “large” open subset of the
big cone [9, Conjecture 2.18]. The differentiability of vol on Big(X) was established
by Boucksom, Favre and Jonsson [3] in characteristic zero and by Cutkosky [5] in
general.

In this paper we are interested in the behaviour of the volume function on blow-
ups. More precisely, let D be an ample R-Cartier R-divisor on X and let Z  X be

a closed proper subscheme, with defining ideal IZ . Let πZ : X̃ → X be the blow up
along IZ and let E = π−1

Z (Z) be the exceptional divisor, with the scheme structure
defined by the ideal IZOX̃ ' OX̃(1). For t ∈ R, we let Dt = π∗ZD − tE. The
purpose of this short article is to observe that the behaviour of the function

ϕD,Z : R≥0 → R, t 7→ vol(Dt)

is closely related to the Seshadri constant of D along Z, defined to be

εZ(D) = sup{t ∈ R | Dt is ample}.
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Seshadri constants were originally introduced by Demailly [7] in the case where
Z = {x} is a closed point. They have been widely studied since then, at least when
dimZ = 0, and have become an important tool to understand the geometry of
projective varieties. We refer the reader to [2] and [12, Chapter 5] for background
and motivation about this invariant. We shall prove the following theorem and
study some of its consequences.

Theorem 1.1. Assume that the line bundle OE(−E) = OX̃(1)|E is nef on E.
Then

εZ(D) = sup{t ≥ 0 | ϕD,Z is polynomial on [0, t]}.

We remark that the assumption on OE(−E) is automatically satisfied when
Z = {x1, . . . , xr} is a collection of r ≥ 1 distinct closed points in X, since in that
case the line bundle OX̃(1) is relatively ample. When the inclusion Z  X is a
regular embedding (e.g. when X and Z are smooth), OE(−E) is nef if and only if
the anti-conormal bundle IZ/I

2
Z is nef. We shall actually prove a generalization of

Theorem 1.1, valid without any positivity assumption on OE(−E) (see Theorem
3.1). The proof of Theorem 1.1 builds on ideas of McKinnon and Roth [13], and
is based on a criterion for amplitude in terms of higher cohomological functions
due to de Fernex, Küronya and Lazarsfeld [6] and to Murayama [15] (see Theorem
2.1 below). We use the assumption on OE(−E) to guarantee the vanishing of the

higher cohomological functions ĥi(X̃,Dt) when i ≥ 2 and t ≥ 0 (see Lemma 3.3), in
order to combine the main result of [6] with the asymptotic Riemann-Roch theorem.
This leads to the identities

εZ(D) = sup{t ≥ 0 | vol(Dt) = DdimX
t } = sup{t ≥ 0 | ĥ1(X̃,Dt) = 0},

from which we easily deduce Theorem 1.1.
Let γZ(D) be the supremum of the real numbers t such that ϕD,Z(t) > 0. We

consider the function

φD,Z : [0, γZ(D)]→ R, t 7→ 〈DdimX−1
t 〉 · E,

where 〈DdimX−1
t 〉 denotes the positive intersection product introduced in [3, section

2] (see also [5, section 4]). By [5, Theorem 5.6], the function ϕD,Z is differentiable
on (0, γZ(D)) and its derivative is given by ϕ′D,Z = −dim(X)φD,Z . In particular,
Theorem 1.1 remains true if ϕD,Z is replaced by φD,Z .

Corollary 1.2. If OE(−E) is nef, then

εZ(D) = sup{t ≥ 0 | φD,Z is polynomial on [0, t]}.

When X̃ is a smooth surface (for example when X and Z are smooth and
dimX = 2), ϕD,Z is a piecewise polynomial function of degree at most 2 by a
theorem of Bauer, Küronya and Szemberg [1, Theorem]. It follows that ϕD,Z and
φD,Z are polynomial on an interval [0, t] if and only if φD,Z is differentiable on (0, t).

Corollary 1.3. Assume that X̃ is a smooth surface and that OE(−E) is nef. Then

εZ(D) = sup{t ≥ 0 | φD,Z is differentiable on (0, t)}.

It is worth to note that when X̃ is a smooth surface, the function φD,Z is simply
given by φD,Z(t) = Pt ·E for all t ∈ [0, γZ(D)), where Pt is the positive part in the
Zariski decomposition of Dt = π∗ZD − tE. This follows from the definition of the
positive intersection product, as explained in [3, section 3.4]. Let us also mention
that when X is a smooth surface and Z  X is a smooth irreducible curve, Theorem
1.1 and Corollary 1.3 remain valid even if OE(−E) is not nef (see Corollary 3.5).

Let us now focus on zero-dimensional subschemes, that is Z = {x1, . . . , xr} is a
collection of closed points in X. When k is uncountable and the points x1, . . . , xr
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are in very general position, we shall see that the function ϕD,Z depends only on
D and r (see Proposition 4.2 for a precise statement, and Proposition 4.1 for a
more general result valid for higher dimensional subschemes). We denote it by
ϕD,r. It is differentiable on some non-empty interval [0, γr(D)), and we let φD,r =
−ϕ′D,r/dimX. In particular, we recover from Theorem 1.1 the well-known fact that

Seshadri constants at r very general points all take the same value εr(D). Indeed,
we have

εr(D) = sup{t ≥ 0 | ϕD,r is polynomial on [0, t]}.
Of course we also have analogues of Corollaries 1.2 and 1.3: for example, if X is a
smooth surface then

(1) εr(D) = sup{t ≥ 0 | φD,r is differentiable on (0, t)}.
A celebrated conjecture of Nagata predicts that for r ≥ 9 very general points
x1, . . . , xr in P2

C and for any integral curve C ⊂ P2
C, we have

deg(C) ≥ 1√
r

r∑
i=1

multxiC.

This conjecture was settled by Nagata when r is a perfect square, but the general
case remains open despite many attempts in the past decades. It can be formulated
in terms of Seshadri constants as follows: if D is a line in P2

C, then εr(D) ≥ 1/
√
r

whenever r ≥ 9 ([12, Remark 5.1.14]). In view of (1), we have the following
equivalent formulation of

Nagata’s conjecture. Let X = P2
C and D be a line. Then for any r ≥ 9, the

function φD,r is differentiable on (0, 1/
√
r).

We mention that similar reformulations of Nagata’s conjecture can also be de-
rived from the computation of Newton–Okounkov bodies of line bundles on blow-ups
of P2

C obtained by Eckl ([8, Theorems 3.4 and 3.5]).

Organization of the paper. We recall some preliminary results on higher cohomolog-
ical functions in section 2. We then prove Theorem 1.1 in section 3. In section 4 we
study the behaviour of ϕD,Z when Z varies in a flat family of subschemes (Proposi-
tion 4.1). In the case dimZ = 0, we prove that the function ϕD,Z = ϕD,r depends
only on D and r = card(Z) when Z consists of very general points (Proposition
4.2).

2. Conventions and background

Throughout this paper we work over an algebraically closed field k. We denote
by Div(X) the group of Cartier divisors on a projective scheme X. A R-Cartier
R-divisor on X is an element of Div(X)R := Div(X)⊗Z R. We let N1(X)R be the
real Néron-Severi space of X ([12, section 1.3.B]). A projective variety is a reduced
and irreducible projective scheme.

2.1. Higher cohomological functions. Let X be a projective variety of dimen-

sion d ≥ 1. For any integer 0 ≤ i ≤ d, we denote by ĥi : Div(X) → R the higher
cohomological function introduced by Küronya in [11]: for any D ∈ Div(X) we
have

ĥi(X,D) = lim sup
n→+∞

hi(X,nD)

nd/d!
,

where hi(X,nD) = hi(X,OX(nD)) is the dimension of Hi(X,OX(nD)) as a k-

vector space. Note that ĥ0(X,D) = vol(D) coincides with the volume of D. More-

over, the functions ĥi are homogeneous of degree d and induce well defined functions

ĥi : Div(X)R → R
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for 0 ≤ i ≤ d, that are continuous on every finite-dimensional R-linear subspace
with respect to any norm (see [11, Corollary 5.3] and [4, Proposition 3.4.8]). We will
use the following theorem characterizing ampleness in terms of vanishing of higher
cohomological functions. It was proved by de Fernex, Küronya and Lazarsfeld [6,
Theorem A] over the complex numbers, and generalized in arbitrary characteristic
by Murayama [15].

Theorem 2.1 ([15], Theorem B). Let D,A ∈ Div(X)R be two R-Cartier R-divisors
on X, with A ample. Then D is ample if and only if there exists a real γ > 0 such
that

ĥi(X,D − tA) = 0

for all i ∈ {1, . . . , d} and t ∈ (0, γ).

2.2. Cohomology of nef divisors. We need the following technical lemma for
the proof of Theorem 1.1.

Lemma 2.2. Let A1, . . . , A` ∈ Div(X) be nef Cartier divisors on a projective
scheme X of dimension d ≥ 0. Then for any coherent sheaf F on X, there exists
a real number C such that

hi(X,OX(n1A1 + . . .+ n`A`)⊗OX F) ≤ C max
1≤j≤`

nd−ij

for any integers i, n1, . . . , n` ≥ 0.

Proof. We adapt the arguments of [12, Theorem 1.4.40]. We may assume by induc-
tion that the statement is true for any projective scheme of dimension ≤ d− 1. For
any n = (n1, . . . , n`) ∈ N`, we let nA ∈ Div(X) be the nef Cartier divisor given by

nA =
∑`
j=1 njAj . By Fujita’s vanishing theorem [12, Theorem 1.4.35 and Remark

1.4.36], there exists a very ample divisor H ∈ Div(X) which does not contain any
subvariety of X defined by the associated primes of F and such that

Hi(X,OX(H + nA)⊗OX F) = 0

for any i ≥ 1 and n ∈ N`. We have an exact sequence of sheaves

0→ OX(nA)⊗OX F → OX(H + nA)⊗OX F → OH(H + nA)⊗OH F|H → 0,

from which we obtain

hi(X,OX(nA)⊗OX F) ≤ hi−1(H,OH(H + nA)⊗OH F|H) = O( max
1≤j≤`

nd−ij )

for any integer i ≥ 1 by induction. Since the Euler characteristic

χ(OX(nA)⊗OX F) =

d∑
i=0

(−1)ihi(X,OX(nA)⊗OX F)

is a polynomial of total degree at most d in n1, . . . , n` [10, I.1], we deduce that
h0(X,OX(nA)⊗OX F) = O(max1≤j≤` n

d
j ) and the lemma is proved. �

3. Proof of Theorem 1.1

Let X be a projective variety of dimension d ≥ 1 and let D ∈ Div(X)R be an
ample R-Cartier R-divisor. We fix a closed proper subscheme Z  X, and we

denote by πZ : X̃ → X the blow-up of X along the ideal sheaf IZ defining Z in X.
We let E be the exceptional divisor and for any t ∈ R, we consider the R-Cartier

R-divisor Dt = π∗ZD− tE on X̃. Recall that the Seshadri constant of D along Z is

εZ(D) = sup{t ∈ R≥0 | Dt is ample}.
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Since OX̃(−E) = OX̃(1) is relatively ample with respect to πZ , εZ(D) > 0 is
positive by [12, Proposition 1.7.10]. We also consider the invariant ωZ(D) ∈ [0,∞]
defined by

ωZ(D) = sup{t ∈ R≥0 | Dt|E is ample},
where by a slight abuse of notation we denoted by Dt|E the image in N1(E)R of

the class of Dt in N1(X)R. Note that ωZ(D) ≥ εZ(D). The goal of this section is
to prove the following result, which generalizes Theorem 1.1 in the introduction.

Theorem 3.1. We have

εZ(D) = sup{t ∈ [0, ωZ(D)) | ϕD,Z is polynomial on [0, t]}.

Note that when OE(−E) is nef, then ωZ(D) = ∞. Hence Theorem 3.1 indeed
implies Theorem 1.1. We shall derive it from the following proposition.

Proposition 3.2. We have

εZ(D) = sup{t ∈ [0, ωZ(D)) | vol(Dt) = Dd
t }

= sup{t ∈ [0, ωZ(D)) | ĥ1(X̃,Dt) = 0}.

When Z = {x} is a point, this statement is implicitly proved by McKinnon and
Roth in [13, Proof of Theorem 9.1]. We shall prove Proposition 3.2 by combining the
arguments of [13] with Lemma 2.2. We need the following lemma, which improves
and generalizes [13, Lemma 4.1].

Lemma 3.3. For any integer i ∈ [2, d] and any real number t ∈ [0, ωZ(D)], we

have ĥi(X̃,Dt) = 0. Moreover,

vol(Dt) = Dd
t + ĥ1(X̃,Dt).

Proof. We first assume that D ∈ Div(X) is a Cartier divisor. Let i ∈ {2, . . . , d}
and t ∈ [0, ωZ(D)]. In order to prove that ĥi(X̃,Dt) = 0, we may assume that

t ∈ (0, ωZ(D))∩Q by continuity of ĥi. By homogeneity of ĥi, we may even assume
that t is a positive integer. For any integer n ≥ 1, we have an exact sequence

(2) 0→ OX̃(nDt)→ OX̃(nD0)→ OX̃(nD0)⊗O
X̃
OntE → 0,

where ntE denotes the subscheme of X̃ defined by the nt-th power of the ideal

sheaf IE of the Cartier divisor E. Since D is ample, we have Hj(X̃,OX̃(nD0)) = 0
for all n� 1 and j > 0. It follows from (2) that

(3) Hi(X̃, nDt) = Hi−1(X̃,OX̃(nD0)⊗OntE),

for n large enough. For any integer ` ≥ 1 we have OE(−`E) = I`E/I
`+1
E . This yields

an exact sequence of sheaves on X̃

0→ OX̃(nD0)⊗O
X̃
OE(−`E)→ OX̃(nD0)⊗O

X̃
O(`+1)E → OX̃(nD0)⊗O

X̃
O`E → 0,

from which we obtain

hi−1(X̃,OX̃(nD0)⊗O(`+1)E) ≤ hi−1(X̃,OX̃(nD0)⊗O`E)+hi−1(E,OE(nD0−`E)).

Combining this inequality with (3), we get

(4) hi(X̃, nDt) = hi−1(X̃,OX̃(nD0)⊗OntE) ≤
nt−1∑
`=0

hi−1(E,OE(nD0 − `E)).

Let 0 ≤ ` ≤ nt−1 be an integer and let k = d`/te be the least integer with k ≥ `/t.
We have

OE(nD0 − `E) = OE((n− k)D0 + kDt + jE),
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where j = tk − ` ∈ {0, · · · , t}. Since OE(D0) and OE(Dt) are nef, Lemma 2.2
applied with F = OE(jE) for all possible values of j gives a real number C > 0
such that

hi−1(E,OE(nD0 − `E)) ≤ Cnd−i

for all n ∈ N and ` ∈ {0, . . . , nt− 1}. By (4), it follows that

ĥi(X̃,Dt) = lim
n→+∞

hi(X,nDt)

nd/d!
= 0.

By the asymptotic Riemann-Roch theorem, we have vol(Dt) − ĥ1(X̃,Dt) = Dd
t ,

and the lemma is proved in the case where D ∈ Div(X).
In general, there exist Cartier divisors D1, . . . , D` ∈ Div(X) such that D ∈ V :=

SpanR(D1, . . . , D`), and there exists a sequence (Dn)n∈N in SpanQ(D1, . . . , D`) ⊆ V
converging to D in V . Let t ∈ (0, ωZ(D)) be a real number. Then Dt|E is ample,
and therefore Dn,t|E is ample for n sufficiently large by [12, Example 1.3.14]. In

particular, t ∈ (0, ωZ(Dn)] for n� 1. By the above and by homogeneity of the ĥi,
we have

(5) vol(Dn,t)− ĥ1(X̃,Dn,t) = Dd
n,t and ĥi(Dn,t) = 0 ∀ i ∈ {2, . . . , d}

for n� 1. By continuity, (5) also holds for D and the lemma is proved. �

Proposition 3.2 is a consequence of Theorem 2.1 and Lemma 3.3.

Proof of Proposition 3.2. The second equality is implied by the first one by using
Lemma 3.3. For any t ∈ [0, εZ(D)], Dt is nef and therefore vol(Dt) = Dd

t by [12,
Corollary 1.4.41]. Since t ≤ ωZ(D), this gives the inequality

εZ(D) ≤ sup{t ∈ [0, ωZ(D)] | vol(Dt) = Dd
t }.

To prove the converse, let α be the supremum on the right hand side. By Lemma

3.3, we have ĥ1(Dt) = 0 for all t ∈ [0, α). Let s ∈ (0, εZ(D)) and t ∈ (0, α) be real
numbers. By definition of εZ(D), Ds is ample. For any λ > 0 small enough we

have 0 ≤ t−λs
1−λ < α, and by homogeneity of ĥ1 we deduce that

ĥ1(X̃,Dt − λDs) = (1− λ)dĥ1(X̃,D t−λs
1−λ

) = 0.

By homogeneity and Lemma 3.3, we also have ĥi(X̃,Dt − λDs) = 0 for all i ≥ 2.
By Theorem 2.1 Dt is ample, hence t ≤ εZ(D). By letting t tend to α, we obtain

sup{t ∈ [0, ωZ(D)] | vol(Dt) = Dd
t } = α ≤ εZ(D).

�

We can easily derive Theorem 3.1 from Proposition 3.2 as follows. Recall that
ϕD,Z(t) = vol(Dt) for all t ∈ R≥0.

Proof of Theorem 3.1. By Proposition 3.2, it suffices to show that the following
implication holds for any γ > 0:

ϕD,Z is polynomial on [0, γ] =⇒ ∀t ∈ [0, γ], ϕD,Z(t) = Dd
t .

Let γ > 0 be a real number such that ϕD,Z |[0,γ] is a polynomial. Then

P : t 7→ ϕD,Z(t)−Dd
t

is a polynomial function on [0, γ]. On the other hand, P (t) = 0 for all t ∈ [0, εZ(D)].
Since εZ(D) > 0, it follows that P = 0 on [0, γ]. �

In the end of this section, we study in more detail the case where Z  X is a
smooth irreducible curve. The following example gives an alternative description
of the invariant ωZ(D).
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Example 3.4. (1) Assume that X is a smooth surface and that Z = C  X is

a smooth irreducible curve. In that case, X̃ = X and E = C. In particular,
OE(−E) is nef if and only if C2 ≤ 0. On the other hand, Dt|E is ample if

and only if Dt ·E = D ·C− tC2 > 0. It follows that ωC(D) =∞ if C2 ≤ 0,
and ωC(D) = (D · C)/C2 otherwise.

(2) Assume that X is smooth and that Z = C  X is a smooth irreducible
curve. In that case, the normal sheaf NC := (IC/I

2
C)∨ is a vector bundle

of rank d − 1 on C and we have E = Proj(N∨C ). We denote by µmax(NC)
the maximal slope of NC , defined as

µmax(NC) = max
06=F⊆NC

deg(F)

rk(F)
,

where F runs over the non-zero sub-bundles of NC . We also define the
strong maximal slope ofNC as µmax(NC) = supτ : C′→C µmax(τ∗NC), where
the supremum is over the finite k-morphisms τ : C ′ → C of smooth projec-
tive integral curves (when k has characteristic zero, we have µmax(NC) =
µmax(NC) by [14, Proposition 7.1 (3)]). Let ξ ∈ N1(E)R be the class of
OE(1) and let f ∈ N1(E)R be the class of a fiber of E → C. For any
t ∈ R≥0, the class of Dt|E in N1(E)R is (D · C)f + tξ for any t ≥ 0. By
[14, Proposition 7.1 (3)], Dt|E is ample if and only if (D ·C) > tµmax(NC),
and therefore

ωC(D) =

{
(D · C)/µmax(NC) if µmax(NC) > 0,
∞ if µmax(NC) ≤ 0.

We refer the reader to [16, section 3] for more explicit computations of the
invariant ωC(D) in the case where X = P3

k.

In view of Example 3.4 (1), we see that the assumption of Theorem 1.1 is rather
restrictive when dimZ > 0. Nevertheless, the following corollary shows that when
Z = C is a smooth irreducible curve in a smooth surface, Theorem 1.1 and Corollary
1.3 remain valid even if OE(−E) is not nef. Recall that φD,C(t) = −ϕ′D,C(t)/d for

every t ≥ 0 such that ϕD,C(t) > 0.

Corollary 3.5. Assume that X is a smooth surface and that Z = C  X is a
smooth irreducible curve. Then

εC(D) = sup{t ≥ 0 | ϕD,C is polynomial on [0, t]}
= sup{t ≥ 0 | φD,C is differentiable on (0, t)}.

Proof. If C2 ≤ 0, then OE(−E) is nef and the result is given by Theorem 1.1 and
Corollary 1.3. In the following, we assume that C2 > 0. In particular, ωC(D) =
(D · C)/C2 by Example 3.4 (1). Let

βC(D) := sup{t ≥ 0 | ϕD,C is polynomial on [0, t]},

and let γ ∈ (0, βC(D)) be a real number. Then ϕD,C is a decreasing polynomial
function on [0, γ]. As in the proof of Theorem 3.1, we have

ϕD,C(t) = D2
t = D2 − 2tD · C + t2C2

for every t ∈ [0, γ]. Since ϕD,C(γ) = vol(Dγ) ≥ 0, studying the variation of the
polynomial ϕD,C |[0,γ] leads to the inequalities

γ ≤
D · C −

√
(D · C)2 −D2C2

C2
≤ D · C

C2
= ωC(D)

(note that (D · C)2 − D2C2 ≥ 0 by the Hodge index Theorem). Letting γ tend
to βC(D), we obtain βC(D) ≤ ωC(D). On the other hand we have εC(D) =
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min{βC(D), ωC(D)} by Theorem 3.1, and therefore

εC(D) = βC(D) = sup{t ≥ 0 | ϕD,C is polynomial on [0, t]}.

Combining this equality with [1, Theorem] as in the introduction, we also have

εC(D) = sup{t ≥ 0 | φD,C is differentiable on (0, t)}.

�

Remark 3.6. Assume that X is smooth (of arbitrary dimension d ≥ 1) and that
Z  X is a smooth divisor with Picard rank ρ(Z) = 1. In that case, we also have

εZ(D) = βZ(D) := sup{t ≥ 0 | ϕD,Z is polynomial on [0, t]}.

Indeed, if t > ωZ(D) then Dt|Z is not ample, hence it is not big since ρ(Z) = 1.
Arguing as in the proof of Lemma 3.3, it follows that ϕD,Z(t) = ϕD,Z(t′) for all
t′ > t. This implies that ωZ(D) ≥ βZ(D), and therefore εZ(D) = βZ(D) by
Theorem 3.1.

4. Variation of volume functions in families

We retain the notation of section 3, and we assume that the field k is uncountable.
Our goal in this section is to study the behaviour of ϕD,Z when the subscheme
Z  X varies in a flat family. The following proposition implies in particular that
the functions ϕD,Z all coincide for sufficiently general zero-dimensional subschemes
of a given cardinality, as claimed in the introduction (see Proposition 4.2 below).

Proposition 4.1. Let S be a Noetherian scheme locally of finite type over k, and
let Z  X ×k S be a closed subscheme, flat over S. For any s ∈ S(k), let Zs be the
fiber of Z above s. Then there exists a countable union V = ∪n∈NVn  S of proper
subvarieties of S such that

ϕD,Zs(t) = ϕD,Zs′ (t)

for all t ∈ R≥0 and s, s′ ∈ S(k) \ V .

Proof. We assume that S is irreducible without loss of generality. We first consider
the case where D ∈ Div(X) is a Cartier divisor. Let IZ ⊂ OX×kS be the ideal
sheaf defining Z in X ×k S, and let s ∈ S(k). We identify the fiber X ×k {s} with
X and we denote by js : X ↪→ X ×k S the corresponding closed immersion. Let

πs : X̃s → X be the blow-up of X along the ideal IZs defining Zs in X, and let Es
be the exceptional divisor. By flatness, j∗s IZ = IZs is the ideal defining Zs in X.
By the semi-continuity theorem applied to X ×k S → S, the function

s ∈ S(k) 7→ h0(X,OX(pD)⊗OX I
q
Zs)

is upper semicontinuous for any integers p, q ≥ 0. On the other hand, we have
πs∗OX̃s(−qE) = IqZs for any sufficiently large integer q, and therefore the projection
formula gives

h0(X̃s, pπ
∗
sD − qEs) = h0(X,OX(pD)⊗ IqZs)

for any integers p, q ≥ 0 with q large enough. It follows that

{s ∈ S(k) | ϕD,Zs(t) < α}

is a countable intersection of open subsets in S(k) for any t ∈ Q≥0 and α ∈ R. This
implies the existence of a countable union of proper subvarieties V = ∪n∈NVn  S
such that for all s ∈ S(k) \ V , we have

(6) ∀ t ∈ Q≥0, ϕD,Zs(t) = vol(π∗sD − tEs) = inf
s′∈S(k)

ϕD,Zs′ (t).
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By continuity of vol, (6) actually holds for all t ∈ R≥0. Therefore the function
ϕD,Zs is independent of the choice of s ∈ S(k) \ V , and the proposition is proved
in the case where D ∈ Div(X) is a Cartier divisor.

In general, there exists a sequence (Dn)n∈N of elements of Div(X) ⊗Z Q such
that (Dn)n∈N converges to D in N1(X)R. By the above and by homogeneity of
vol, for every n ∈ N there exists a countable union of proper subvarieties Wn  S
such that ϕDn,Zs(t) = ϕDn,Zs′ (t) for all t ∈ R≥0 and all s, s′ ∈ S(k) \Wn. Let
V = ∪n∈NWn and let s, s′ ∈ S(k) \ V . Then for every t ∈ R≥0, we have

ϕD,Zs(t) = lim
n→∞

ϕDn,Zs(t) = lim
n→∞

ϕDn,Zs′ (t) = ϕD,Zs′ (t)

by continuity of vol. �

Proposition 4.1 applies in particular when S is a Hilbert scheme as follows. Given
a very ample line bundle OX(1) on X and a polynomial Ψ ∈ Q[T ], we denote by

HilbΨ
X/k the Hilbert scheme of closed subschemes of X whose Hilbert polynomial

computed with respect to OX(1) is Ψ. By Proposition 4.1 applied to S = HilbΨ
X/k,

there exist a countable union of proper subvarieties VΨ  HilbΨ
X/k and a function

ϕD,Ψ : R≥0 → R such that

ϕD,Z = ϕD,Ψ

for every closed subscheme Z ∈ HilbΨ
X/k(k) \ VΨ. When we restrict our attention

to zero-dimensional subschemes, we obtain the following result. Let r ≥ 1 be an
integer and let Xr = X ×k · · · ×k X be the fiber product of r copies of X.

Proposition 4.2. There exist a countable union of proper subvarieties V  Xr

and a function ϕD,r : R≥0 → R such that ϕD,{x1,...,xr} = ϕD,r for all (x1, . . . , xr) ∈
Xr(k) \ V .

Proof. This follows from the above discussion by taking Ψ = r. Alternatively, this
result follows directly from Proposition 4.1 applied to the schemes S and Z ⊂ X×kS
defined by

S(k) = {(x1, · · · , xr) ∈ Xr
sm(k) | xi 6= xj ∀i 6= j}

and

Z(k) = {(x, (x1, . . . , xr)) ∈ X(k)× S(k) | x ∈ {x1, . . . , xr}},

where Xsm denotes the smooth locus of X. �

Remark 4.3. As mentioned in the introduction, Theorem 1.1 and Proposition 4.2
imply that the function

(x1, . . . , xr) ∈ Xr(k) 7→ ε{x1,...,xr}(D) ∈ R

is constant outside a countable union of proper subvarieties V  Xr. This result
is well-known and can also be derived directly from the definition of ε{x1,...,xr}(D),
by using that ampleness is an open condition in a proper family of line bundles (see
[12, Theorem 1.2.17 and Example 5.1.11]).
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